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Background

Homophily: The tendency of individuals to associate and 

bond with similar others

• People with the same interest are more closely connected

• Researchers who focus on the same research area are more 

likely to establish a connection

Images credit to Easley and Kleinberg, Networks, crowds, and markets. 2010   
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Background

Heterophily: Nodes from different classes tend to connect 

to each other

• Fraudsters connect to benign users to camouflage themselves

• Interdisciplinary papers cite papers from other research areas

Image (Right) credit to yworks.com  
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Preliminaries

Heterophilous Graph
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Preliminaries

➢ Graph-level Homophily Ratio:

➢Node-level Homophily Ratio:

Homophily Ratio                                        Definitions:
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Preliminaries -- Categorization of Graph Benchmarks

Heterophilous Graph

Lim, Derek, et al. "Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods." NeurIPS 2021.   

Homophilous Graph

Semi-Homophilous Graph
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Motivation

Semi-Homophilous Graph

Weak Homophily Strong HomophilyStrong Heterophily Weak Heterophily
Node-level Homophily Ratio
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➢For strong homophilous nodes, the 

accuracy is close to 0.99. 

➢For strong heterophilous nodes, the 

accuracy ranges from 0.48 to 0.74.

➢For the four GNNs, the performance 

gap exists with a range from 0.25 to 

0.5.

Group-wise Performance
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Observation

➢The node-level homophily ratio computed 

from incomplete labels are unreliable

• Some node labels are unavailable 

during the training phase

For transductive node classification      
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➢ The output of GNNs exhibit high uncertainty 

for heterophilous nodes

• The output uncertainty may help to identify 

heterophilous nodes



Method - Overview

➢ UD-GNN: Uncertainty-aware Debiased Graph Neural Network

①
Uncertainty 

Estimation

②
Mask parameters 

for 𝒱con

③
Debiased Training



• Monte Carlo dropout variational inference

• Estimated from { ෡𝐖𝑡}𝑡=1
𝑇 GNN predictors

Method

➢ Uncertainty Estimation
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Method

➢ Debiased Training

• Divide 𝒱train into 𝒱con and 𝒱unc according 

to 𝑈 such that debiasing ratio 𝛾 =
|𝒱con|

|𝒱unc|

• Prune the parameters close to zero in 𝐖𝑏

with 0-1 mask 𝑍 and retrain the remained 

parameters with 𝒱con
• Freeze 𝑍 ⊙𝐖𝑏 and train (1 − 𝑍)⊙𝐖𝑏

with 𝒱unc to obtain 𝐖𝑑

𝐖𝑑 = (1 − 𝑍)⊙𝐖𝑏 + stop_gradient(𝑍 ⊙𝐖𝑏)
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Data

➢ Public benchmark

• cSBM: contextual stochastic block models

• Penn94:  a friendship network from the Facebook100 networks

• Cora-full: a citation network labeled on the paper topic

• Ogbn-arxiv: the citation network between all Computer Science (CS) 

arXiv papers indexed by MAG

➢Train/Valid/Test:

• cSBM: 40%/20%/40%

• Penn94:  80%/10%/10%

• Cora-full: 70%/10%/20%

• Ogbn-arxiv: 2017/2018/2019



Experiment

➢ Compared methods

• GCN, GAT: Traditional graph convolutional network and graph attention network

• Mixhop: Repeatedly mixing feature representations of neighbors at various distances

• GPR-GNN: Generalized PageRank GNN

• JK-Net: Jump Knowledge

• H2GCN, CPGNN: GNNs for heterophilous graphs

• WRGAT: Improving the assortativity of graphs with local mixing patterns

• U-GNN: Universal GCN extracting information from 1-hop, 2-hop and kNN networks 

➢ Metrics

• Accuracy: eval(𝐘, 𝑓𝐖(𝐀, 𝐗))

• Relative bias: 𝛿 = eval(𝐘, 𝑓𝐖∗(𝐀, 𝐗)) − eval(𝐘, 𝑓𝐖(𝐀, 𝐗))



Experiment

➢RQ1: Does UD-GNN outperform the state-of-the-art methods on semi-homophilous 

graphs?

• UD-GNN achieves the best accuracy with the lowest relative bias



Experiment

➢RQ2: How do the key components contribute to the results?

➢D-GNN removes uncertainty estimation and trains a separate model to 

discriminate homophilous nodes from heterophilous nodes for debiasing. 

➢U-GNN removes debiased training and applies Focal loss based on the 

estimated uncertainty scores.



Experiment

➢RQ3: Does UD-GNN work well on heterophilous graphs?

• UD-GNN improves the performance due to the refining of uncertain nodes 

in the debiased training.

• UD-GNN achieves the best results on Chameleon and Squirrel, with 

comparable performance on Wisconsin.



Experiment

➢RQ4: What is the sensitivity of UD-GNN with respect to different debiasing ratios, 

mixing ratios and number of classes? 
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Conclusion and Future work

➢Conclusion

• We investigate the bias issue between homophily and heterophily on semi-
homophilous graphs.

• We propose an Uncertainty-aware Debiasing framework to mitigate the bias.

• Experiments on four benchmark semi-homophilous graph datasets demonstrate the 
effectiveness of the proposed framework. 

➢Future Work

• New message passing architecture for semi-homophilous graphs

• Spectral filter for semi-homophilous graphs
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