Graph Adversarial Attack



Adversarial Machine Learning

xr

“panda”
57.7% confidence

+.007 x

sign(VJ (6, z,y))
“nematode”
8.2% confidence

T+
esign(VgJ (0, x,y))
“gibbon”

99.3 % confidence



Adversarial Attacks on Graph Structure
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Defense: Structure Learning

A straightforward method to deal with the structural perturbation is to find
the adversarial edges and remove them.
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Background: Existing Methods

Previous Methods

Learn edge weights by a pair-wise metric function--- §;; = o(z;, zj), Further, the
structure can be optimized according to the weights matrix S.

Compute the function via original features: CNNGuard, GCN-Jaccard
Drawbacks: Lack of structural information - Cause a trade-off.

Optimize the structure via representations (task-relevant) learned by the classifier: GRCN
Drawbacks: The quality of the representations co-varies with the downstream task performance.

Ptb Rate | GCN GRCN GNNGuard Jaccard

0% 83.56 86.12 78.52 81.79
5% 76.36  80.78 77.96 80.23
10% 71.62  72.42 74.86 74.65

20% 60.31  65.43 72.03 73.11




Representations Are The Key

Reliable Representations Make the Defender Stronger:

e Carrying feature information and in the meantime carrying as much correct

structureinformation as possible
e Insensitive to structural perturbations and task-irrelevant

!

STABLE - an unsupervised pipeline for structure refining



Advantages of Unsupervised Learning

Why is unsupervised learning?

e The unsupervised approach is relatively reliable because the objective is not directly
attacked (task-irrelevant).

e The unsupervised pipeline can be viewed as a kind of pretraining, and the learned
representations may have been trained to be invariant to certain useful properties
(modified structurehere).



Graph Adversarial Attack

Preprocessing and Recovery Schema

We choose graph contrastive learning as our backbone with two
robustness-oriented designs

e Preprocess the structure by a simple schema: §;; = sim(xi, xj)

——Remouve the easily detected adversarial edges

e The augmentation scheme in contrastive methods are naturally similar to adversarial

attacks.
We generate M views by randomly recovering a small portion of the removed edges.



Contrastive Model
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Graph Adversarial Attack

Reliable Representations

Recall our requirements for the reliable representations:

e Carrying feature information and in the meantime carrying as much correct
structure information as possible

——The preprocessing and the effectiveness of contrastive learning meet this requirements.
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Graph Adversarial Attack

Reliable Representations

o Insensitive to structural perturbations

——The recovery can be viewed as injecting slight attacks on G?, which makes the

representations insensitive to the perturbations. e, &
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Graph Refining

We can easily refine the structure by the learned representations.

1 ifMij > to and Ajj =1

Prune the graph: M;; =sim(h;, h; R _
grap ij = sim(hy, hj) — Aj {0 otherwise,

Add helpful edges --- Link each node with k nodes that are most similar to it.
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The Vulnerability of GCN

0.51 Perturbations

Normal Edges

We find GCN suffers from the renormalization trick. D4
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Experimental Setup

Datasets

Four public benchmark datasets

O
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Cora (Citation Graph)
Citeseer (Citation Graph)
PubMed (Citation Graph)
Polblogs (Political Blog Graph)

We only consider the largest connected
connected component (LCC).

Datasets | Nice Epce Classes Features

Cora

Citeseer | 2,110 3,668 6
Polblogs | 1,222 16,714 2 /
PubMed | 19717 44338 3

2,485 5,069 7 1433
3703

500

Compare methods
Seven robust GNNs under 3 attack methods

RGCN O MetaAttack
Jaccard O DICE
GNNGuard O RANDOM
GRCN

ProGNN

SimpGCN

Elastic
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Robustness Evaluation

RQI1: Does STABLE outperform the state-of-the-art defense models under different
types of adversarial attacks?

Dataset ‘ Ptb Rate | GCN RGCN Jaccard GNNGuard  GRCN ProGNN  SimPGCN Elastic STABLE

0% 83.56x0.25 83.85+0.32 81.79+0.37 78.52+0.46 86.12+0.41 84.55+0.30 83.77£0.57 84.76+0.53 85.58+0.56
5% 76.36+0.84 76.54+0.49 80.23+0.74 77.96+0.54 80.78+£0.94 79.84+0.49 78.98+1.10 82.00+£0.39 81.40+0.54
Cora 10% | 71.62£1.22 72.11+£0.99 74.65+£1.48 74.836+0.54 72.43+0.78 74.22+0.31 75.07£2.09 76.18+0.46 80.49+0.61
15% | 66.37£1.97 65.52+£1.12 74.29+£1.11 74.15x1.64 70.72+1.13 72.75+0.74 71.42+3.29 7441+0.97 78.55+0.44
20% |60.31£1.98 63.23+0.93 73.11+0.88 72.03+1.11 65.34+1.24 64.40+0.59 68.90+£3.22 69.64+0.62 77.80+1.10

0% 74.63+0.66 75.41+0.20 73.64+0.35 70.07+1.31 75.65+0.21 74.73+0.31 74.66+0.79 74.86+0.53 75.82+0.41
5% 71.13+£0.55 72.33+£0.47 71.15+0.83 69.43+1.46 74.47+0.38 72.88+0.32 73.54+0.92 73.28+0.59 74.08+0.58
Citeseer 10% | 67.49+£0.84 69.80+£0.54 69.85+0.77 67.89+1.09 72.27+0.69 69.94+0.45 72.03£1.30 73.41+0.36 73.45+0.40
15% | 61.59+1.46 62.58+0.69 67.50+0.78 69.14+0.84 67.48+0.42 62.61+0.64 69.82+1.67 67.51+0.45 73.15+0.53
20% 56.26+0.99 57.74+0.79 67.01+£1.10 69.20£0.78 63.73£0.82 55.49+1.50 69.59+3.49 65.65£1.95 72.76+0.53

0% 95.04+0.11 95.38+0.14 94.89+0.24 95.93+0.17 94.86+0.46 95.57+0.26 95.95+0.27
5% 77.55+0.77 76.46+0.47 80.37+0.46 93.48+0.54 75.08+1.08 90.08+1.06 93.80+0.12
Polblogs 10% | 70.40£1.13 70.35+£0.40 69.72+£1.36 85.81+1.00 68.36+1.88 84.05£1.94 92.46+0.77
15% | 68.49+0.49 67.74+0.50 66.56+0.93 75.60+0.70 65.02+0.74 72.17+0.74 90.04+0.72
20% | 68.47£0.54 67.31+£0.24 68.20£0.71 73.66+0.64 64.78+1.33 71.76+0.92 88.46+0.33

—~— — —
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0% 86.83+£0.06 86.02+£0.08 86.85+0.09 85.24+0.07 86.72+0.03 87.33+£0.18 88.12+0.17 87.71+0.06 87.73+ 0.11
5% 83.18+0.06 82.37+0.12 86.22+0.08 84.65+0.09 84.85+0.07 87.25+0.09 86.96+0.18 86.82+0.13 87.59+0.08
Pubmed 10% | 81.24+0.17 80.12+£0.12 85.64+0.08 84.51+0.06 81.77+0.13 87.25+0.09 86.41+0.34 86.78+0.11 87.46+0.12
15% | 78.63+0.10 77.33+0.16 84.57+0.11 84.78+0.10 77.32+0.13 87.20+0.09 85.98+0.30 86.36+0.14 87.38+0.09
20% 77.08+0.2 74.96+0.23 83.67+0.08 84.25+0.07 69.89+0.21 87.09+0.10 85.62+0.40 86.04+0.17 87.24+0.08




Accuracy

Robustness Evaluation

RQI1: Does STABLE outperform the state-of-the-art defense models under different
types of adversarial attacks?
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Result of Sturcture Learning

RQ2: Is the structure learned by STABLE better than learned by other methods?

The statistics of the learned graphs

Method | Total | Adversarial | Normal | Accuracy(%)

Jaccard 1,008 447 561 44.35
GNNGuard | 1,082 432 600 44.55
STABLE 1,035 601 434 58.07

It can be observed that STABLE achieves the highest pruning accuracy, indicating

that STABLE revise the structure more precisely via more reliable representations.
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Parameter Analysis

RQ3: What is the performance with respect to different training parameters?
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Ablation Study

RQ4: How do the key components benefit the robustness?
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Graph Adversarial Attack

Why is Graph Attack so Destructive to GNNs ?

We find a interesting phenomenon which inspires us to revisit this
problem from a data distribution perspective.

We formulate the distribution shift in graph adversarial attack scenario.

We empirically and theoretically analyze the phenomena in graph attack and defense.

Then, based on the analysis and observation, we provide nine practical tips to
improve existing and future graph attack and defense.
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Thanks [ Q & A

Name: Kuan Li| Email: likuan20s@ict.ac.cn
Homepage: https://likuanppd.github.io/
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INSTITUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SCIENCES
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