

Pick and Choose: A GNN-based Imbalanced Learning Approach for Fraud Detection

Yang Liu¹; Xiang Ao^{1*}; Zidi Qin¹; Jianfeng Chi²; Jinghua Feng²; Hao Yang²; Qing He¹

柳阳1; 敖翔1*; 秦紫笛1; 池剑锋2; 冯景华2; 杨浩2; 何清1

Institute of Computing Technology, Chinese Academy of Sciences

* denotes corresponding author.

Content

- Background and Motivation
- ≻ Method PC-GNN
- > Experiment
- Conclusion and Future Work

> Background and Motivation

- ➤ Method PC-GNN
- > Experiment
- Conclusion and Future Work

Fraud

- Opinion fraud (fake/spam review)
- Financial fraud (fraudster/defaulter)

Online Review Sites

I was given the product for free, in exchange for a review, and I can honestly say that it has good bass and sound. The only con is that the microphone does not work on laptop/PC.

2 people found this helpful

Helpful

Comment Report abuse

Friend or Paid Reviewer

Fraud

- Opinion fraud (fake/spam review)
- Financial fraud (fraudster/defaulter)

Credit Default

Identity Theft

Tax Evasion

Images from https://hrdailyadvisor.blr.com/2020/04/02/qa-identity-theft-benefits-more-relevant-than-ever/ https://www.icoservices.com/news/reasons-why-doing-illegal-tax-evasion-unnecessary.html

Fraud Detection

• A set of processes and analyses that allow businesses to identify and prevent unauthorized financial activity.

Images from https://www.gminsights.com/industry-analysis/fraud-detection-and-prevention-market

Graph-based Fraud Detection

- Relational data could be modeled as a graph
- Examples: product reviews

- R-U-R Reviews posted by the same User
- **R-S-R** Reviews under the same product with the same Star rating
- **R-T-R** Reviews under the same product in the same monTh

Graph-based Fraud Detection

- Relational data could be modeled as a graph
- Examples: financial scenario

- U-T-U User Trades to another
- U-D-U Users log in the same Device
- U-F-U User transfer Fund to another
- U-S-U Users have Social relationships

Class imbalance problem

- Only a small fraction of samples belong to the fraud class
- The trained model is easily biased to the majority class

Motivation

Imbalanced Learning on Graphs

Challenges:

➤ Camouflage:

- redundant links between fraudsters and benign users
- lack necessary links among fraudsters
- Message Aggregation:
 - Most neighbors belong to the majority class
 - The prediction would be biased

Content

- Background and Motivation
- Method PC-GNN
- > Experiment
- Conclusion and Future Work

> **Pick** nodes from the whole graph

 $\mathbf{D}_{r}^{(\ell)}\left(\mathbf{h}_{v,r}^{(\ell)}\right) = \sigma\left(\mathbf{U}_{r}^{(\ell)}\mathbf{h}_{v,r}^{(\ell)}\right)$

Choose neighbors for the minority class

- $\overline{\mathcal{N}_r^{(\ell)}}(v) = \left\{ u \in \mathcal{V} | \mathcal{C}(u) = \mathcal{C}(v) \text{ and } \mathcal{D}_r^{(\ell)}(v, u) < \rho_+ \right\}$ • Over-sample neighbors of the minority class $\mathcal{N}_r^{(\ell)}(v) =$ $\underline{N_r^{(\ell)}}(v) - \underbrace{\bigcirc}{b}$ 6 b $\mathcal{N}_r^{(\ell)}(v) = \left\{ u \in \mathcal{V} | A_r(v, u) > 0 \text{ and } \mathcal{D}_r^{(\ell)}(v, u) < \rho_- \right\}$ Under-sample neighbors of both classes • • For minority targets: $N_r^{(\ell)}(v) = \underline{N_r^{(\ell)}}(v) \cup \overline{N_r^{(\ell)}}(v)$ $\mathcal{D}_{r}^{(\ell)}(v,u) = \left\| \mathbf{D}_{r}^{(\ell)}\left(\mathbf{h}_{v,r}^{(\ell)}\right) - \mathbf{D}_{r}^{(\ell)}\left(\mathbf{h}_{u,r}^{(\ell)}\right) \right\|_{1}$
 - For majority targets: $N_r^{(\ell)}(v) = N_r^{(\ell)}(v)$ •

> PC-GNN: Pick and Choose Graph Neural Network

> PC-GNN: Training

• Training the distance function

$$\mathcal{D}_{r}^{\left(\ell\right)}\left(v,u\right) = \left\| \mathbf{D}_{r}^{\left(\ell\right)}\left(\mathbf{h}_{v,r}^{\left(\ell\right)}\right) - \mathbf{D}_{r}^{\left(\ell\right)}\left(\mathbf{h}_{u,r}^{\left(\ell\right)}\right) \right\|_{1}$$

$$\begin{split} p_{v,r}^{(\ell)} &= \mathrm{D}_r^{(\ell)} \left(\mathbf{h}_{v,r}^{(\ell)} \right) \\ \mathcal{L}_{\mathrm{dist}} &= -\sum_{\ell=1}^L \sum_{r=1}^R \sum_{v \in \mathcal{V}} \left[y_v \log p_{v,r}^{(\ell)} + (1 - y_v) \log \left(1 - p_{v,r}^{(\ell)} \right) \right] \end{split}$$

• Training GNN framework

$$\begin{aligned} \mathbf{h}_{v,r}^{(\ell)} &= \operatorname{ReLU}\left(W_r^{(\ell)}\left(\mathbf{h}_{v,r}^{(\ell-1)} \oplus \operatorname{AGG}_r^{(\ell)}\left\{\mathbf{h}_{u,r}^{(\ell-1)}, u \in \mathcal{N}_r^{(\ell)}(v)\right\}\right) \\ \mathbf{h}_v^{(\ell)} &= \operatorname{ReLU}\left(W^{(\ell)}\left(\mathbf{h}_v^{(\ell-1)} \oplus \mathbf{h}_{v,1}^{(\ell)} \oplus \cdots \oplus \mathbf{h}_{v,R}^{(\ell)}\right)\right) \\ p_v &= \operatorname{MLP}\left(\mathbf{h}_v^{(L)}\right) \\ \mathcal{L}_{gnn} &= -\sum_{v \in \mathcal{V}}\left[y_v \log p_v + (1 - y_v) \log(1 - p_v)\right] \end{aligned}$$

• Overall loss function

$$\mathcal{L} = \mathcal{L}_{gnn} + \alpha \mathcal{L}_{dist}$$

Content

Background and Motivation

≻ Method – PC-GNN

> Experiment

- RQ1: Does PC-GNN outperform the state-of-the-art methods for graph-based anomaly detection?
- RQ2: How do the key components benefit the prediction?
- RQ3: What is the performance with respect to different training parameters?
- RQ4: If the proposed modules are applied to other GNN models, will it bring performance improvement?
- Conclusion and Future Work

Public benchmark - Opinion fraud detection

- YelpChi: hotel and restaurant reviews on Yelp
- Amazon: product reviews under the Musical Instrument category

- Real-world dataset Financial fraud detection
 - Provided by Alibaba Group
 - M7 collects users from from 2018/07/01 to 2018/07/31
 - **M9** collects users from from 2018/09/01 to 2018/09/30

≻Train/Valid/Test:

• 40%/20%/40%

Dataset	#Node	#Edge	IR	Relations	#Relations
YelpChi	45,954	3,846,979	5.9	R-U-R R-S-R R-T-R	49,315 3,402,743 573,616
Amazon	11,944	4,398,392	13.5	U-P-U U-S-U U-V-U	175,608 3,566,479 1,036,737

Dataset	#Node	#Edge	IR	Relations	#Relations
M7	188,673	2,239,344	118.4	U-T-U U-D-U U-F-U U-S-U	2,179,770 28,630 24,724 6,220
M9 253,221		5,568,580	141.5	U-T-U U-D-U U-F-U U-S-U	5,483,056 40,354 36,644 8,526

\succ Compared methods

- GCN, GAT: traditional GNNs
- **DR-GCN:** dual-regularized GCN for imbalanced classification
- GraphSAGE, GraphSAINT: sampling-based GNNs
- GraphConsis, CARE-GNN: SOTA for graph-based fraud detection
- **PC-GNN** $_{P}$, **PC-GNN** $_{C}$: Model with Pick and Choose removed for ablation study

> Metrics

- F1-macro: macro average of F1-score of each class
- AUC: Area Under the ROC Curve
- GMean: Geometric Mean of True Positive Rate (TPR) and True Negative Rate (TNR)

➢RQ1: Does PC-GNN outperform the state-of-the-art methods for graph-based anomaly detection?

≻ Compared with state-of-the-art CARE-GNN_[CIKM'20]

- AUC improvement 3.6%~5.2%
- GMean improvement 0.6%~3.7%

	Dataset	YelpChi			Amazon		
Method	Metric	F1-macro	AUC	GMean	F1-macro	AUC	GMean
	GCN GAT DR-GCN	0.5620±0.0067 0.4879±0.0230 0.5523±0.0231	0.5983±0.0049 0.5715±0.0029 0.5921±0.0195	0.4365±0.0262 0.1659±0.0789 0.4038±0.0742	0.6486±0.0694 0.6464±0.0387 0.6488±0.0364	0.8369±0.0125 0.8102±0.0179 0.8295±0.0079	0.5718±0.1951 0.6675±0.1345 0.5357±0.1077
Baselines	GraphSAGE GraphSAINT	0.4405±0.1066 0.5960±0.0038	0.5439±0.0025 0.6999±0.0029	0.2589 ± 0.1864 0.5908 ± 0.0298	0.6416±0.0079 0.7626±0.0032	0.7589±0.0046 0.8701±0.0025	0.5949 ± 0.0349 0.7963 ± 0.0091
	GraphConsis CARE-GNN	0.587 <u>0+</u> 0.0200 0.6332±0.0094	0.6983±0.0302 0.7619±0.0292	0.5857±0.0385 0.6791±0.0359	0.7512±0.0325 0.8990±0.0073	0.8741±0.0334 0.9067±0.1115	0.7677±0.0486 0.8962±0.0018
Ablation	$PC-GNN_P$ $PC-GNN_C$	0.5136±0.0147 0.6634±0.0058	0.7844±0.0013 0.7847±0.0021	$\begin{array}{c} 0.2336 {\pm} 0.0356 \\ 0.6258 {\pm} 0.0378 \end{array}$	$\begin{array}{c} \textbf{0.9158}{\pm}\textbf{0.0024} \\ \textbf{0.8929}{\pm}\textbf{0.0171} \end{array}$	0.9469 ± 0.0018 0.9529 ± 0.0035	$\begin{array}{c} 0.8782 {\pm} 0.0068 \\ 0.9006 {\pm} 0.0045 \end{array}$
Ours	PC-GNN	0.6300 ± 0.0230	$0.7987 {\pm} 0.0014$	$0.7160 {\pm} 0.0130$	0.8956±0.0077	0.9586 ± 0.0014	0.9030 ± 0.0044

Experiment

- ≻ Compared with state-of-the-art CARE-GNN_[CIKM'20]
 - AUC improvement 2.6%~3.5%
 - GMean improvement 28.4%~31.9%

	Dataset		M7			M9	
Method	Metric	F1-macro	AUC	GMean	F1-macro	AUC	GMean
Baselines	GCN GAT DR-GCN	0.3108±0.0256 0.2746±0.0168 0.3070±0.0232	0.6107 ± 0.0041 0.6083 ± 0.0149 0.7195 ± 0.0208	0.5456 ± 0.0159 0.5016 ± 0.0168 0.5647 ± 0.0403	0.3016±0.0574 0.2698±0.0069 0.5055±0.0012	0.5790 ± 0.0040 0.5647 ± 0.0069 0.6637 ± 0.0236	0.5241±0.0422 0.4354±0.0346 0.3106±0.0417
	GraphSAGE GraphSAINT	0.5186 ± 0.0030 0.5149 ± 0.0036	0.6790 ± 0.0029 0.6915 ± 0.0068	0.1605 ± 0.0132 0.2547 ± 0.0459	0.5020±0.0026 0.5018±0.0019	$\begin{array}{c} 0.6342 {\pm} 0.0040 \\ 0.6587 {\pm} 0.0049 \end{array}$	0.0525 ± 0.0362 0.1864 ± 0.0354
	GraphConsis CARE-GNN	0.5236±0.0087 0.5578±0.0015	0.6826±0.0049 0.7836±0.0020	0.27 <u>34±0.0548</u> 0.3451±0.0098	0.5124±0.0043 0.5361±0.0035	0.6743±0.0076 0.7579±0.0060	0.2302±0.0467 0.2908±0.0294
Ablation	$PC-GNN_P$ $PC-GNN_C$	0.4979 ± 0.0000 0.5735 ± 0.0017	$0.7434 {\pm} 0.0042$ $0.8132 {\pm} 0.0031$	0.0000 ± 0.0000 0.4362 ± 0.0254	$\begin{array}{c} 0.4982 {\pm} 0.0000 \\ 0.5353 {\pm} 0.0028 \end{array}$	0.6575 ± 0.0069 0.7668 ± 0.0038	0.0000 ± 0.0000 0.3138 ± 0.0387
Ours	PC-GNN	$0.5749 {\pm} 0.0044$	$0.8192 {\pm} 0.0032$	0.6645 ± 0.0422	0.5370±0.0021	0.7847±0.0019	$0.5740 {\pm} 0.0391$
Ours	PC-GNN	0.5749±0.0044	0.8192±0.0032	0.6645±0.0422	0.5370±0.0021	0.7847±0.0019	0.5740±0

► RQ2: How do the key components benefit the prediction?

Experiment

► RQ3: What is the performance with respect to different training parameters?

THE

CONFERENCE

➢RQ4: If the proposed modules are applied to other GNN models, will it bring performance improvement?

	Dataset		YelpChi		Amazon			
-	Metric	F1-macro	AUC	GMean	F1-macro	AUC	GMean	
	GCN	0.4645 ± 0.0033	0.5983 ± 0.0049	0.0483 ± 0.0373	0.5297±0.0539	0.8369 ± 0.0125	0.1904±0.1716	
	GCN(T)	0.5620±0.0067	0.5983±0.0049	0.4365±0.0262	0.6486±0.0694	0.8369±0.0125	0.5718±0.1951	
Ļ	GCN(P)	0.5540 ± 0.0275	0.6122 ± 0.0643	$0.5114 {\pm} 0.0107$	$0.7138 {\pm} 0.0086$	$0.8773 {\pm} 0.0027$	$0.7823 {\pm} 0.0374$	
	GraphSAGE	0.4608 ± 0.0000	0.5439 ± 0.0025	0.0000 ± 0.0000	0.4751±0.0000	0.7589 ± 0.0046	0.0000 ± 0.0000	
_	GraphSAGE(T)	0.4405±0.1066	0.5439±0.0025	0.2589±0.1864	0.6416±0.0079	0.7589±0.0046	0.5949±0.0349	
i	GraphSAGE(P)	$0.6178 {\pm} 0.0286$	$0.7765 {\pm} 0.0025$	0.6952±0.0176	0.5831±0.0227	0.7627±0.0097	0.6993±0.0081	

Content

- Background and Motivation
- ≻ Method PC-GNN
- > Experiment
- Conclusion and Future Work

➤Conclusion

- We propose a GNN-based imbalanced learning method named PC-GNN to solve the class imbalance problem in graph-based fraud detection
- Experiments on two benchmark opinion fraud datasets and two real-world financial fraud datasets demonstrate the effectiveness of the proposed framework.

≻Future Work

• Graph structure learning for imbalanced graph data

Thanks for listening!

If you have any question, feel free to contact us at <u>liuyang17z@ict.ac.cn</u> <u>aoxiang@ict.ac.cn</u>

Paper and slides are available at https://ponderly.github.io/