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ABSTRACT

Though graph neural networks (GNNs)-based fraud detectors have
received remarkable success in identifying fraudulent activities, few
of them pay equal attention to models’ performance and explain-
ability. In this paper, we attempt to achieve high performance for
graph-based fraud detection while considering model explainability.
We propose NGS (Neural meta-Graph Search), in which the mes-
sage passing process of a GNN is formalized as a meta-graph, and a
differentiable neural architecture search is devised to determine the
optimized message passing graph structure. We further enhance the
model by aggregating multiple searched meta-graphs to make the
final prediction. Experimental results on two real-world datasets
demonstrate that NGS outperforms state-of-the-art baselines. In ad-
dition, the searched meta-graphs concisely describe the information
used for prediction and produce reasonable explanations.
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1 INTRODUCTION

Fraud is an intentional deception designed to obtain financial or
personal gain, which causes severe damage to our life [3, 6, 8, 18, 30].
Therefore, numerous approaches have been developed in past years
for fraud detection [20, 26, 37], among which graph-based ones have
escalated much attention. The possible reason might be the graph
data presents rich behavioral interactions among users, offering
multifaceted information for fraud detection.

Despite the success in fraud detection, most existing graph-based
methods cannot explain “what drives the model to make certain
predictions?”, which will limit their application in critical areas
such as finance. Although various self-explanatory GNNs have
been proposed recently, they will face performance and efficiency
limitations when deployed on real-world tasks like fraud detection.
For example, SE-GNN [5] and ProtGNN [34] rely on the assumptions
of K-Nearest Neighbor and prototype learning, respectively, which
may not necessarily apply to real scenarios. Therefore, developing
a fraud detector that simultaneously gives high-quality predictions
and explanations is imperative to the deployed anti-fraud systems.

One perspective to obtain explanations for fraud detection is ap-
plying attention mechanisms that generate soft masks on the input
graph [12, 29]. The masked sub-graphs are regarded as rationales
to guide the model predictions. However, there is still debate over
whether attention can provide explanations [1], and recent research
suggests that attention-as-importance interpretations often do not
work as expected [2, 15]. Another way is meta-path sampling, which
employs human-defined meta-paths to aggregate information from
the meta-path-aware neighborhood [11, 36]. Meta-paths illustrate
what semantic information the model captures, thus offering ex-
plainability. However, it is challenging to manually design meta-
paths, as it usually requires prior knowledge about task-related pat-
terns. Moreover, the meta-path is generally arranged in a sequence
that limits its capacity to capture intricate semantic proximity. For
example, the skip, merge or split connection is not allowed in meta-
path design. In a nutshell, how to enable model explainability while
keeping high performance and efficiency for graph-based fraud
detection has not been well addressed.

In this paper, inspired by DiffMG [7], a recent differentiable meta-
graph search for heterogeneous information networks (HINs), we
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propose Neural meta-Graph Search (NGS for short) for explainable
graph neural network-based fraud detection. The framework con-
sists of three steps: (1) formalizing the message passing process of
GNN using meta-graph; (2) searching the meta-graph using differen-
tiable neural architecture search (DARTS) [19]; (3) aggregating node
embeddings captured by multiple meta-graphs. After searching, the
model is retrained with the derived meta-graphs for final evalua-
tion. Compared with previous works, the meta-graphs searched
by NGS define the internal message passing process of the GNN,
providing high-quality intrinsic explanations for the model predic-
tion. Meanwhile, NGS employs DARTS to automatically search the
meta-graphs without any prior knowledge. Moreover, meta-graphs
can capture complex semantic relations and thus help the model
achieve higher performance [14, 35].

We conduct extensive experiments on two real-world opinion
fraud detection datasets. Experimental results show that our method
exceeds state-of-the-art baselines with satisfying performance. The
searched meta-graphs reveal the factors that drive the model to
make specific predictions and thus allow our NGS to be capable of
explainability. The demonstration is consistent with prior human
experience and helps deepen our understanding of the datasets.

2 RELATED WORKS

Graph-based Fraud Detection. Graph-based methods have shown
their superiority in fraud detection. For example, SemiGNN [29]
applies a GNN-based hierarchical attention mechanism to detect
fraudsters on Alipay. GraphConsis [22] and CARE-GNN [9] filter
dissimilar neighbors before aggregation to find out camouflage
fraudsters. PC-GNN [21] and AO-GNN [13] solve the label im-
balance issue by node resampling and edge pruning, respectively.
FRAUDRE [33] unifies four modules into a GNN to tackle the graph
inconsistency and imbalance issues. H2-FDetector [27] considers
the homophilic and heterophilic connections simultaneously. How-
ever, few of them balance explainability.

Explainable GNNs. Recently, the inherent explainability of GNNs
has received much attention. Self-explainable GNNs like SE-GNN
[5] and ProtGNN [34] are proposed to give predictions and explana-
tions simultaneously. However, their assumptions do not necessar-
ily hold in real-world scenarios. For graph-based fraud detection,
AMG-DP [12] and SemiGNN [29] utilize attention mechanisms to
tell the essential factors for the fraud. HACUD [11] and MAHIN-
DER [36] explain the predictions by predefined meta-paths. Nev-
ertheless, explanations provided by attention mechanisms are not
reliable, and the meta-path definition is inefficient.

3 PRELIMINARIES

Definition 3.1 (Multi-relation Graph). Given a graph G = (V, &,
A, X, Y), V denotes the set of nodes and & = {Er}|}§=1 denotes
the edge set of R relations. If R > 1, we define G as a multi-relation
graph. A = {Ar}|§:1, where A, denotes the adjacency matrix
formed by the edges of type r. x; € X represents a feature vector
of node v; and x; € RY. Y is the set of labels for each node in V.

Definition 3.2 (Meta-graph). A meta-graph M is a directed acyclic
graph (DAG), with a single source node and a single target node.
The edge connecting to nodes denotes the relation r.
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Figure 1: An overview of the search step of NGS. (a) Continu-
ous relaxation of the search space by mixing all candidates
on each edge, indicating aggregating messages coming along
all possible relations. (b) The final meta-graph induced from
the learned mixing probabilities and the message passing
process guides on the example graph.
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4 METHODOLOGY

This section presents the details of our proposed method NGS,
which has three essential components: meta-graph-defined message
passing, DARTS employment, and multi-meta-graph aggregation.

4.1 Meta-graph-defined Message Passing

Generally, a GNN learns node representations by utilizing the mes-
sage passing scheme to aggregate information from nodes’ neigh-
bors. This process can be mathematically written as:

HO =MLP (X), H®D = Aggr (H(’);A) 1)

where X denotes the node attributes, Aggr(H(l);A) denotes aggre-
gate information H!) from neighbors defined by A. Specifically,
we choose the graph convolutional network (GCN) [17] as the basic
GNN. HD is the node representations in the I-th layer. However, for
multi-relation graphs, Eq. (1) indiscriminately aggregates messages
coming along all relations and thus loses semantic information.
Therefore, we use expressive meta-graph M 4 to describe the
message passing process between GNN layers by selecting edge
types when aggregating neighbors’ information. The meta-graph’s
source node and target node denote initial and final representa-
tions: H® and H (L), and the ordered nodes denote intermediate
representations in the computation procedure. L is the predefined
number of intermediate states. In this DAG, each intermediate
node HD (1 <1<L)is computed based on all of its predecessors:

HOD = Do<i<l fil (H(i);ﬂi’l).fi,l denotes passing H® message
along a particular relation type given by the corresponding edge of
the meta-graph, which is selected from A; ;. A; ; is defined as:

A= AUAI} I<Landi=1-1 @
Ll AU{I}U{0} I<Landi<I-1

where A is the adjacency matrix collection of the multi-relation
graph G. The identity matrix I and the empty matrix O allow the
number of actual message passing steps and incoming links for
HY in the searched meta-graph to be flexible [7].
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4.2 DARTS Employment

In order to efficiently search the meta-graph, we relax the discrete
edge type selection to be continuous like DARTS [19]:

) exp ((xf‘l)
()= 5,
AeA;; ZA’eﬂi,l exp (afl)
In Eq. (3), messages passing along all possible relations are mixed
by introducing the learnable architecture parameters «, which is
illustrated in Figure 1(a).

Following the meta-graph guided message passing process, an
MLP classifier is trained to minimize the cross-entropy loss:

L=~Yoev [Yologpo + (1 -yo) log (1 - po)] )
where p, = MLP (h,), and label y, = 1 denotes fraud while y, = 0
denotes benign. h, is the final latent vector of node v obtained from

- Aggr (H (");A) 3)

HL) The model parameters (weight matrices and biases) w and
architecture parameters « are optimized in a bi-level schema:
muin Lya (0" (@), 0‘) , sto" (a) =arg ngn Lirain (0, @) (5)

We apply the first-order approximation here to solve the prob-
lem: in each iteration we first fix @ and update w by calculating
0Lirain/ 9w, then we fix w and update a through 0.L,,1/9a.

After convergence, the optimal meta-graph can be achieved
by choosing the edge type with the maximum e, as illusrated in
Figure 1(b). Then at the evaluation phase, the model is constructed
and retained following the designed meta-graph.

4.3 Multi-meta-graph Aggregation
To boost the final performance of NGS, we search for multiple
meta-graphs and combine the semantic information revealed by
them. For each, we first apply a meta-graph specific transformation
for projected node attributes: H]ﬁ/?) =0 (MLP H(O))), where o
is an activation function such as ReLU. It encodes node attributes
that may be relevant to fraudulent behavior [33]. After meta-graph
guided message passing, for node v € V, we have |V| sets of latent
vectors: {hﬁ,wl, hﬁ,wZ, e hQ/IK}, where K is the predefined number of
meta-graphs. We assign different weights to these meta-graphs and
aggregate them as follows.
M, M;
epm, = MLP (hv k) o ho=2ick<k Pmy - hy *
exp (e My ) 6)
Py = —————
L1k <K exp(eMk, )

where h, is the node vector used for final prediction.

5 EXPERIMENTS

In this section, we conduct a comparative evaluation of NGS against
various baselines on two graph-based fraud detection datasets, ex-
ceeding or matching performance across all of them.

5.1 Experimental Setup

Datasets. We adopt two real-world fraud detection datasets to
validate NGS’s performance: Amazon [23] and YelpChi [25]. The
nodes in the Amazon graph are users with 25-dimension features,
and edges are designed by three relations: U-P-U, U-S-U, and U-V-U.
The nodes in the Yelpchi are reviews with 32-dimension features,
and edges are designed by three relations: R-U-R, R-T-R, and R-S-R.
The descriptions and statistics of datasets can be found in [27].
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Baselines. We compare NGS with various GNN baselines. We
select GCN [17], GAT [28], and GraphSAGE [10] as general GNN
models. We choose CARE-GNN [9], PC-GNN [21], FRAUDRE [33],
AO-GNN [13], and H?-FDetector [27] as state-of-the-art GNN-based
fraud detection methods. We select ProtGNN [34] as a representa-
tive self-explainable GNN, while we do not compare our model with
SE-GNN [5] as it is out of GPU memory on our machine. DifftMG
[7] is a differentiable meta-graph search algorithm in HINs. NGS, 4
is a variant of NGS removing multi-meta-graph aggregation.

Experimental Settings and Implementation. We employ the Adam
[16] optimizer for NGS. We run the model for 100 epochs at the
search stage to derive meta-graphs. The learning rate of « and w
are 3¢~ and 0.005. We set L = 4 and K = 4 for all datasets. At
the evaluation stage, we run the model for 500 epochs. DifftMG
shares the same hyper-parameters but applies the author suggested
training strategy. For general GNNs and ProtGNN, we set the layer
to 4 and train them on homogeneous graphs where all types of
edges are merged for 500 epochs. For GNN-based fraud detection
methods, we use the parameters provided by the authors. We report
the average score and standard deviation of 10 runs for each baseline.
The division of datasets is similar to [21].

To alleviate the label imbalance problem, we apply the threshold-
moving strategy [4] to NGS, DiffMG, ProtGNN, and general GNNs
by setting the classification threshold to 0.2. GCN, GAT, and Graph-
SAGE are implemented based on DGL [31]. Other baselines are
implemented based on author-provided source code.

5.2 Results

We use the same performance metrics as [21], i.e., F1-macro, AUC,
and GMean. The experimental results are presented in Table 1. We
have the following insightful observations from these results.

First, traditional GNNs treating all edges as single relations per-
form poorly on both datasets, while those baselines implemented on
multi-relation graphs achieve promising results. This reflects that
ignoring the semantic information encoded in different relations
is harmful. NGS outperforms all baselines as it can automatically
utilize task-dependent semantic information via meta-graph search.

Second, according to Table 1, compared with state-of-the-art
fraud detectors, NGS boosts performance by 1%~17% for all metrics
on Amazon and 8%~42% on YelpChi. It suggests that not all relations
and neighbors are helpful for the downstream task. Those baselines
fuse node representations from each relation view. Although they
filter out or assign low weight to useless neighbor nodes, they are
still affected by the noise from worthless relations.

Third, for ProtGNN, NGS improves the performance with 10%~25%
on Amazon and 38%~82% on YelpChi. This is because ProtGNN
treats all edges equally, which ignores semantic information and
makes it hard to discover helpful prototypes. Moreover, ProtGNN
skips the prototype projection because of its high computational
complexity when dealing with the fraud detection task. Thus, the
prototypes as explanations turn into incomprehensible vectors.

Fourth, DiffMG utilizes Gumbel-softmax sampling when search-
ing the meta-graph in HINs. The sampling strategy inevitably af-
fects the search space exploration, leading to a suboptimal meta-
graph structure. NGS employs DARTS that tends to select proper
relations for message passing to help correct the predictions [24].
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Table 1: Performance comparison on Amazon and YelpChi

Dataset ‘ Amazon ‘ YelpChi
Method Metric ‘ F1-macro AUC GMean ‘ Fl-macro AUC GMean
GCN 0.6571+0.0008 0.8189+0.0008 0.6629+0.0037 0.4963+0.0005 0.5504+0.0001 0.2143+0.0019
GAT 0.5390+0.0021 0.7426+0.0020 0.3081+0.0173 0.5228+0.0070 0.5519+0.0012 0.2921+0.0193
GraphSAGE 0.8383+0.0109 0.9149+0.0077 0.8518+0.0077 0.5781+0.0239 0.7409+0.0034 0.6815+0.0049
CARE-GNN 0.8997+0.0064 0.9482+0.0044 0.8982+0.0015 0.6052+0.0170 0.7748+0.0008 0.7071+0.0035
Baselines PC-GNN 0.8660+0.0164 0.9642+0.0035 0.8986+0.0203 0.6192+0.0479 0.8104+0.0057 0.7225+0.0166
FRAUDRE 0.8519+0.1055 0.9408+0.0052 0.8847+0.0280 0.6057+0.0381 0.7582+0.0041 0.6862+0.0128
AO-GNN' 0.8921+0.0045 0.9640+0.0020 0.9096+0.0105 0.7042+0.0051 0.8805+0.0008 0.8134+0.0232
H2-FDetector | 0.8392+0.0000 0.9689+0.0000 0.9203+0.0000 0.6944+0.0000 0.8877+0.0000 0.816+0.0000
ProtGNN ‘ 0.7351+0.0112 0.8826+0.0106 0.7785+0.0126 ‘ 0.5663 +£0.0024 0.6004 £0.0056 0.4595 +£0.0196
DiffMG ‘ 0.8826+0.0049 0.9290+0.0044 0.8855+0.0057 ‘ 0.7316+0.0144 0.8799+0.0142 0.7873+0.0147
Ablation NGS\A ‘ 0.9234+0.0078 0.9692+0.0136 0.9191+0.0087 ‘ 0.7604+0.0227 0.9009+0.0215 0.7981+0.0279
Ours NGS ‘ 0.9228+0.0046 0.9736+0.0035 0.9218+0.0042 ‘ 0.7828+0.0055 0.9218+0.0032 0.8351+0.0056

" The results are obtained from previous work, and H2-FDetector does not report the variance in its experiment.

Experimental results demonstrate that NGS outperforms DiffMG,
with 4%~5% improvement in Amazon and 5%~7% YelpChi.
Finally, for ablation, NGS exceeds or matches its variant for
all metrics on two datasets. This is because multi-meta-graph ag-
gregation can improve fault tolerance by assigning low weight to
the meaningless meta-graph during evaluation, which offsets the
impact of the previous search stage. The lower variance of NGS
supports the conclusion too. Meanwhile, it also allows for more
options in deciding which relations to propagate information along.

5.3 NGS Explainability

We visualize meta-graph instances discovered by NGS on Ama-
zon and YelpChi in Figure 2. In Figure 2(a), we observe that no
relation is involved in the meta-graph of Amazon, suggesting that
the model does not aggregate neighborhood information from any
relations, and user attributes are the key to identifying fraudsters
in Amazon. In Figure 2(b), we observe that the R-U-R relation is
highly relevant to fraud detection. It is consistent with the results
of AO-GNN [13], with merely 0.04% R-U-R edges considered to be
noise and pruned. According to the definition, the nodes in the
R-U-R subgraph are distributed like clusters. In each cluster, the
nodes are connected to each other as they are reviews posted by
the same user. The searched meta-graph shows that the message is
constantly passed and aggregated within the R-U-R cluster. It sug-
gests that if a review is fraudulent, then most of the other reviews
sent by the same poster are also fraudulent, reflecting a typical
default phenomenon: click farming [32]. It should be stressed that
the nodes’ prediction depends only on the neighboring nodes in-
volved in the meta-graph suggested message passing process, and
that’s where the explainability comes from. Visualization is only a
means to show the meta-graph. The explanations suggest that when
designing models in the future, the feature attributes of Amazon
and the R-U-R relation of YelpChi need to be concerned. YelpChi
may be more appropriate when evaluating graph-based fraud de-
tection methods, and that is why our model has more significant
improvements on the YelpChi.
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Figure 2: Meta-graphs searched by NGS and their correspond-
ing message passing process on the example graph. The edge
color denotes the relation type: green denotes the identity
matrix I, and particularly in (b) orange denotes the R-U-R.

6 CONCLUSION

In this paper, we propose an explainable graph-based fraud detec-
tion method, NGS, which balances the performance and explainabil-
ity. The framework of NGS can be decoupled into three components:
formalizing the message passing of GNN as a meta-graph, employ-
ing DARTS to search the meta-graph, aggregating multiple meta-
graphs to enhance stability and expressiveness. Experiments on two
real-world datasets demonstrate that NGS outperforms previous
state-of-the-arts. Moreover, the resulting explainable meta-graphs
illustrate what factors lead to users being predicted as fraudulent,
giving interesting intuitions regarding the tasks.
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