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TL;DR: Robust graph neural networks can be easily bypassed by
adaptive attacks. How can we achieve adaptive robustness on graphs?

€ Based on the evaluation of typical adversarial training, we employ a novel
paradigm that leverages the adversarial samples to enhance robustness.

€ Through the lens of OOD, we re-examine graph attacks and defenses and,
for the first time, propose the existence of a trade-off between the
effectiveness and defensibility of attacks in the context of graph adversarial
attacks.

€ We conduct extensive experiments to compare our methods with other
baselines in adaptive and non-adaptive settings.

Graph Adversarial Attacks

The attacker’s objective is to find an optimal perturbed
graph ¢ that maximally impairs the overall performance of
the downstream classifier. This can be formulated as
follows
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Traditional Adversarial Training

Previous robust GNNSs rely on specific properties, so the
adversary can easily defeat the defenses by imposing
constraints on the same properties during the attack.

What about adversarial training?
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Structural adversarial training
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The model will learn incorrect mapping relationships.
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Our Solution: GOOD-AT

€ Perturbations on images are continuous and
Indistinguishable.

€ Perturbations on graphs are discrete and separated

from clean edges so that they are removable.
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We train an ensemble OOD detector to remove adversarial
edges.
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Graph OOD Detection-based Adversarial Training
GOOD-AT

Adaptive Robustness

Two adaptive attacks against GOOD-AT

» Resample - if the sampled adversarial edge generated
oy PGD can be detected by the detectors, it is discarded

» Regularization
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Trade-off Between Effectiveness And Defensibility
PGD,.s degrades to a vanilla GCN, so perturbations that
can circumvent detectors are more likely to be In-
distribution, which are not that harmful to GNNs.

Adversarial Unit Test

Metric: Relative Area Under the =
Envelope Curve (RAUC), a
budget agnostic metric
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