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Background

Shikhar Gupta, How (dis)similar are my train and test data? in Towards Data Science

➢ Some simple questions about train and test:

• In real-world scenarios, how can we know whether the training data and testing data follow the 

same distribution?

• If there is a slight difference between training and testing set, can the model still achieve good 

generalization performance?



Background

Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, in ICML'21

➢ Out-of-distribution data are ubiquitous in real-world situations

• Unlike images, OOD samples are ambiguous for graph-structured data



Background

➢ In-distribution v.s. Out-of-distribution

• OOD can be defined in terms of certain node 

attribute like node degree.

• In-distribution: The training nodes and testing 

nodes follow similar degree distribution.

• Transductive OOD: The degree of testing 

nodes is different from that of training nodes.

• Inductive OOD: The training nodes and 

testing nodes are from different graphs, thus 

follow different distributions.



Preliminaries

➢ Distribution shift

• P 𝐱, 𝑦 = P 𝐱 P 𝑦|𝐱

• Covariate Shift

𝑃train 𝐱 ≠ 𝑃test 𝐱 and 𝑃train 𝑦|𝐱 = 𝑃test 𝑦|𝐱

• Concept Shift

𝑃train 𝐱 = 𝑃test 𝐱 and 𝑃train 𝑦|𝐱 ≠ 𝑃test 𝑦|𝐱

Gui et al., GOOD: A Graph Out-of-Distribution Benchmark, in NeurIPS’22



Preliminaries

ℛREx 𝜓 = max
σ𝑒 𝜆𝑒=1

𝜆𝑒≥𝜆min

෍

𝑒=1
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➢ Invariant learning

• Invariant Risk Minimization (IRM)

• Risk Extrapolation (REx)

ℛIRM 𝜓 = ෍

𝑒∈ℰ𝑜𝑏𝑠

ℛ𝑒 𝜓 + 𝜆 ∇𝜔ℛ𝑒 𝜔 ∘ 𝜓

ℛe 𝜓 = ℛERM 𝜓 = 𝔼𝑃 (𝑥,𝑦,𝑒)[ℓ(𝑓𝜓(𝑥), 𝑦)]

Krueger et al., Out-of-Distribution Generalization via Risk Extrapolation, in ICML'21



Motivation

➢ Existing invariant learning approaches are not flexible to tackle the 

graph OOD problem

• Expect one model to generalize to various test distributions

• Cope with distribution shift by sticking to an invariant principle

• A better solution is to adapt the model to the target distribution flexibly 

Invariant model

Test sets

Invariant model

Flexible models
Test sets
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Method - Overview

➢ FLOOD: Flexible invariant Learning framework for Out-Of-Distribution 

generalization on graphs



Method

➢ Training Environments Construction

• Node feature masking:

𝑜𝑣
𝑀 ∈ {0,1}𝑑

• Edge dropping:

𝑜(𝑢,𝑣)
𝐸 ∈ {0,1}

𝜂𝑒 X, A = ෩X𝑒 , ෩A𝑒 , e=1...M



Method

➢ Invariant Representation Learning

• Variance Risk Extrapolation

‒ reducing training risks while increasing 

the similarity of training risks to improve 

generalization on target distribution
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Method

➢ Bootstrapped Representation Learning

• online view: 𝐙𝜃 = 𝑔𝜃 𝑓𝜔
෩X𝑖 , ෩A𝑖

• target view: 𝐙𝜉 = 𝑔𝜉 𝑓𝜔
෩X𝑗 , ෩A𝑗

ℒ 𝜃, 𝜔 =
1

𝑁
෍

𝑘=1

𝑁
𝑞𝜃 𝐙𝜃,𝑘

𝑞𝜃 𝐙𝜃,𝑘 2

−
𝐙𝜉,𝑘

𝐙𝜉,𝑘 2 2

2

𝜉 ← 𝜏𝜉 + 1 − 𝜏 𝜃 



Method

➢ Test-time training min
𝜃,𝜔,𝜓

ℒtrain =  ℒ 𝜃, 𝜔 + 𝛼ℛV−REx 𝜔, 𝜓

min
𝜔

ℒtest =  ℒ 𝜃, 𝜔
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Data

➢ Public benchmark

• GOOD-CBAS: colored BA-Shapes

• GOOD-WebKB:  a graph of university webpage

• GOOD-Cora: a citation network labeled on the paper topic

• GOOD-Arxiv: the citation network between all Computer Science (CS) arXiv papers 

indexed by MAG

• Twitch-explicit: contains 6 networks where Twitch users are nodes, and mutual friendships 

between them are edges



Experiment

➢ Compared methods

• ERM: Empirical Risk Minimization

• IRM: Invariant Risk Minimization

• VREx: Variance Risk Extrapolation

• GroupDRO: minimizes the worst-case training loss over a set of pre-defined groups

• DANN: adversarially trains the regular classifier and a domain classifier

• DeepCoral: minimizes the deviation of covariant matrices from different domains

• Mixup: a two-branch Mixup graph convolution to interpolate the irregular graph topology

• SRGNN: Shift-Robust GNN

• EERM: Explore-to-Extrapolate Risk Minimization

➢ Metrics

• Accuracy: eval(𝐘, 𝑓𝐖(𝐀, 𝐗))



Experiment

➢Evaluation and ablation under covariate shift

• FLOOD outperforms current state-of-the-art methods on OOD settings due to 

its flexibility during the test phase



Experiment

➢Evaluation and ablation under concept shift

• FLOOD outperforms current state-of-the-art methods on OOD settings due to 

its flexibility during the test phase



Experiment

➢Evaluation and ablation under inductive distribution shift

• The bootstrapped learning component in FLOOD leads to better generalization performance 

on inductive tasks than transductive tasks.



Experiment

➢RQ3: How does test-time training improve the generalization of GNNs?

• The shared encoder fine-tuned by FLOOD learns more discriminative 

representations, thanks to the bootstrapped learning during the test phase.

Before test-time training After test-time training



Experiment

➢RQ4: What is the sensitivity of FLOOD with respect to the number of training 

environments and gradient descent steps during the test phase?
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Conclusion

➢Conclusion

• We investigated the issue of out-of-distribution (OOD) generalization in graph 
representation learning.

• We proposed a new solution, FLOOD, which combines invariant representation 
learning and bootstrapped representation learning.

• FLOOD aims to find a balance between stability across different training 
environments and adaptability to the test distribution.

• Experiments on OOD benchmark graph datasets demonstrate the effectiveness of 
the proposed FLOOD framework. 
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