
FLOOD: A Flexible Invariant Learning Framework for
Out-of-Distribution Generalization on Graphs

Yang Liu†
Institute of Computing Technology,

Chinese Academy of Sciences
University of Chinese Academy of

Sciences
liuyang520ict@gmail.com

Xiang Ao∗†
Institute of Computing Technology,

Chinese Academy of Sciences
University of Chinese Academy of

Sciences
aoxiang@ict.ac.cn

Fuli Feng
University of Science and Technology

of China
fulifeng93@gmail.com

Yunshan Ma
National University of Singapore

yunshan.ma@u.nus.edu

Kuan Li†
Institute of Computing Technology,

Chinese Academy of Sciences
likuan_buaa@163.com

Tat-Seng Chua
National University of Singapore

dcscts@nus.edu.sg

Qing He∗†
Institute of Computing Technology,

Chinese Academy of Sciences
University of Chinese Academy of

Sciences
heqing@ict.ac.cn

ABSTRACT
Graph Neural Networks (GNNs) have achieved remarkable suc-
cess in various domains but most of them are developed under
the in-distribution assumption. Under out-of-distribution (OOD)
settings, they suffer from the distribution shift between the train-
ing set and the test set and may not generalize well to the test
distribution. Several methods have tried the invariance principle
to improve the generalization of GNNs in OOD settings. However,
in previous solutions, the graph encoder is immutable after the
invariant learning and cannot be adapted to the target distribution
flexibly. Confronting the distribution shift, a flexible encoder with
refinement to the target distribution can generalize better on the
test set than the stable invariant encoder. To remedy these weak-
nesses, we propose a Flexible invariant Learning framework for
Out-Of-Distribution generalization on graphs (FLOOD), which com-
prises two key components, invariant learning and bootstrapped
learning. The invariant learning component constructs multiple
environments from graph data augmentation and learns invariant
representation under risk extrapolation. Besides, the bootstrapped
learning component is devised to be trained in a self-supervised
way with a shared graph encoder with the invariant learning part.
During the test phase, the shared encoder is flexible to be refined

∗Corresponding author.
†Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS).
Xiang Ao is also at Institute of Intelligent Computing Technology, Suzhou, China.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0103-0/23/08.
https://doi.org/10.1145/3580305.3599355

with the bootstrapped learning on the test set. Extensive exper-
iments are conducted for both transductive and inductive node
classification tasks. The results demonstrate that FLOOD consis-
tently outperforms other graph OOD generalization methods and
effectively improves the generalization ability.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; • Computing
methodologies→ Neural networks.

KEYWORDS
graph neural networks, out-of-distribution, invariant learning

ACM Reference Format:
Yang Liu, Xiang Ao, Fuli Feng, Yunshan Ma, Kuan Li, Tat-Seng Chua,
and Qing He. 2023. FLOOD: A Flexible Invariant Learning Framework for
Out-of-Distribution Generalization on Graphs. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3580305.3599355

1 INTRODUCTION
Graph Neural Network (GNN) has become a promising solution
for various graph-based learning tasks, such as social recommenda-
tion [7, 34, 37], drug discovery [11, 17, 29], fraud detection [10, 18,
19, 32], and adversarial robustness [15, 16]. However, most GNNs
have been developed under the in-distribution(ID) assumption and
may not perform well in out-of-distribution(OOD) settings. The
OOD learning deals with scenarios when training and testing data
follow different distributions, which would happen where there
are multiple graphs from different domains or the graph structure
evolves with time.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3580305.3599355
https://doi.org/10.1145/3580305.3599355

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yang Liu et al.

1

2

3

4

5

6 (b) Transductive OOD Setting(a) ID Setting

(c) Inductive OOD SettingTrain Test

Figure 1: Demonstration of transductive and inductive OOD
settings on graphs (Shift domain: node degree).

Focusing on the node classification task, the out-of-distribution
settings on graphs can be categorized into transductive OOD set-
tings and inductive OOD settings with regard to the availability
of the test samples during the training phase. Transductive OOD
settings have access to both the training and testing samples during
the training phase, and a distribution shift would happen when
the train-test split is correlated to a spurious domain. For example,
for paper topic classification in a citation graph, the node degree
is a spurious feature. If we deliberately choose nodes with larger
degrees as training set and test the model on those nodes with
smaller degrees, as shown in Figure 1(b), the model would not gen-
eralize well to the test set and suffer from the distribution shift.
In contrast, a random split as in Figure 1(a) would not result in
such a distribution shift. A typical example of transductive OOD
datasets is GOOD [6] and it includes OOD splits for existing graph
benchmarks. Inductive OOD settings do not allow access to test-
ing samples during the training phase, thus the shift domain is
unknown. A typical example of inductive OOD settings is the multi-
graph generalization [36] as Figure 1(c) shows. When we train a
GNN on the training graph, we need to test the model on multiple
graphs from different sources. However, regardless of whether the
OOD setting is transductive or inductive, test samples are always
available during the test phase.

Several efforts have been conducted to improve the general-
ization of graph neural networks in out-of-distribution settings,
employing various strategies such as pre-training, data augmenta-
tion, invariant learning, etc. Pre-training has rendered effective in
many language and vision domains [2, 23]. Graph pre-training [8, 9],
following the similar idea, designs different kinds of self-supervised
tasks to capture the structural and semantic properties of the graph.
The pre-trained GNN is expected to transfer the knowledge to
downstream tasks with a few labels. One drawback of graph pre-
training is the need for a large training corpus and a few labels of
the targeted tasks. However, for out-of-distribution generalization,
it is hard to get the labels of OOD samples. Graph data augmen-
tation is mainly designed to address the issues of data noise and
scarcity. It might also help OOD generalization as it can enrich

the training distribution. Hence, graph augmentation methods are
usually adopted as baseline for comparison in current graph OOD
solutions. Invariant learning [1, 14, 36] aims to capture the invari-
ant graph patterns across different training environments while
disregarding the variant spurious correlation. Its generalization
ability relies on the diversity of the training environments. How-
ever, current solutions based on invariant learning anticipate that a
fixed graph encoder can output representations invariant to various
OOD scenarios, and do not consider what the test distribution is
like, which limits the generalization ability of the model.

Although several attempts [14, 36] have applied invariant learn-
ing on graphs to handle distribution shifts, they still suffer from the
following drawbacks. The first is that it is hard to construct and op-
timize various training environments on graphs for invariant learn-
ing. EERM [36] designs multiple context generators to construct
different virtual environments, but this incurs a high training cost,
and the output of the generators cannot be guaranteed. GIL [14]
infers the latent environment by clustering algorithms, which can-
not enrich the training distribution. The second is that existing
methods expect one model to generalize to various distributions
and thus are not flexible. The model trained under the invariance
principle is able to extrapolate to distributions around the training
environments. However, the test distribution can still be out of the
scope of extrapolation and the model needs the flexibility to be
refined according to the target distribution.

To remedy the above weaknesses, we propose a Flexible invari-
ant Learning framework for Out-Of-Distribution generalization on
graphs (FLOOD). For the first weakness, we regard each augmented
view of the original graph as a kind of training environment. The
benefits are two-fold. On one hand, data augmentations are always
computationally efficient and do not require many efforts to be
trained. On the other hand, some data augmentations can improve
the OOD generalization of GNN models, and we can benefit from
the augmentation distribution by incorporating it into the invariant
learning framework. For the second one, a bootstrapped learning
part is devised to be trained in a self-supervised way with a shared
graph encoder with the invariant learning part. During the test
phase, the shared encoder is flexible to be refined with the boot-
strapped learning on the test set. In this way, the representation
output by the shared encoder can generalize well to the test distri-
bution and mitigate the impact of the distribution shift.

Our contributions can be listed as follows.

• We investigate the graph out-of-distribution generalization
problem and explore how to adapt the invariant model to
the target distribution flexibly.
• We design a flexible invariant learning framework with a
bootstrapped learning component that can refine the encoder
during the test phase.
• Extensive experiments are conducted on graph OOD bench-
mark for both the transductive and inductive tasks to verify
the effectiveness of the proposed framework.

2 PRELIMINARIES
In this work, let X be the input space, Y be the target label space,
and Eobs be the set of training environments. Let (𝑥,𝑦, 𝑒) ∼ 𝑃obs (𝑥,𝑦, 𝑒)
be observational data, with 𝑥 ∈ X, 𝑦 ∈ Y, 𝑒 ∈ Eobs.

FLOOD: A Flexible Invariant Learning Framework for Out-of-Distribution Generalization on Graphs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

2.1 Distribution Shift
Definition 2.1 (Covariate Shift). In covariate shift, the input dis-

tributions have been shifted between the training and testing data,
while the conditional distribution keeps the same. Formally, 𝑃train (𝑥) ≠
𝑃test (𝑥) and 𝑃train (𝑦 |𝑥) = 𝑃test (𝑦 |𝑥).

Definition 2.2 (Concept Shift). In concept shift, the conditional dis-
tributions have been shifted between the training and testing data,
while the input distribution keeps the same. Formally, 𝑃train (𝑥) =
𝑃test (𝑥) and 𝑃train (𝑦 |𝑥) ≠ 𝑃test (𝑦 |𝑥).

2.2 Invariant Learning
Out-of-distribution generalization refers to the ability to achieve
low error rates on unseen test distributions. Invariant learning ap-
proaches are proposed to reveal invariant relationships between the
inputs and targets across domains. The empirical risk minimization
(ERM) solution is found by minimizing the global risk, expressed
as the expected loss over the observational distribution.

RERM (𝑓𝜓) = E𝑃obs (𝑥,𝑦,𝑒) [ℓ (𝑓𝜓 (𝑥), 𝑦)] (1)

Invariant Risk Minimization (IRM) [1] includes a regularized
objective enforcing simultaneous optimality of the same classifier
𝜔 ◦ 𝑓 in all environments. R𝑒 is short for RERM in environment 𝑒 .

RIRM (𝑓𝜓) =
∑︁

𝑒∈Eobs

R𝑒 (𝑓𝜓) + 𝜆

∇𝜔R𝑒 (𝜔 ◦ 𝑓𝜓)

 (2)

Risk Extrapolation (REx) [13] is a form of robust optimization
over a perturbation set of extrapolated domains as shown in Eq. (3).
It shows that reducing differences in risk across training domains
can reduce a model’s sensitivity to distribution shifts.

RREx (𝑓𝜓) = max
Σ𝑒𝜆𝑒=1
𝜆𝑒≥𝜆min

∑︁
𝑒∈Eobs

𝜆𝑒R𝑒 (𝑓𝜓) (3)

2.3 Problem Statement
We denote a graph as G = (V,X,A), where V = {𝑣1, . . . , 𝑣𝑁 }
is the set of nodes, X ∈ R𝑁×𝐷 denotes node features, and A ∈
{0, 1}𝑁×𝑁 is an adjacency matrix representing the connections
between nodes. Note that 𝑁 and 𝐷 represent the number of nodes
and features, respectively. Besides, we denote the labels of the node
as Y ∈ {0, 1}𝑁×𝐶 where 𝐶 is the number of classes.

We focus on the out-of-distribution node classification, where the
target is to learn a 𝐶-way classification function from the training
graph Gtrain to predict the unlabeled nodes in the test graph Gtest.
Gtrain and Gtest follow different distributions (either covariate shift
or concept shift). For transductive settings, Gtrain and Gtest are
on the same graph but denote different node sets. For inductive
settings, Gtrain and Gtest are different graphs. Formally,

𝑓𝜓 : (X,A) → Y, (4)

where𝜓 denotes the parameters of the function. The parameters
are typically learned over a set of labeled nodes by minimizing a
classification loss such as cross-entropy. Moreover, we aim to utilize
Gtest to finetune𝜓 for better generalization during the test time.

3 METHODOLOGY
We start by motivating our method before explaining its details in
this section.Many graph out-of-distribution generalizationmethods
are built on the invariance principle. They explore various training
environments to find the invariant relationships between features
and labels while disregarding the variant spurious correlations.
Many efforts have been devoted to constructing the environments to
explore the possible distribution. However, such approaches neglect
what the test distribution is like and cannot be adapted to different
test distributions. To mitigate this issue, we expect to build a flexible
invariant learning framework with a bootstrapped representation
learning process, which can exploit the target distribution in a self-
supervised manner. Consequently, the parameters can be finetuned
by the self-supervised task under the test-time training [20, 31]
mechanism, without relying on any label of the test set.

3.1 Overview
We illustrate the pipeline of the proposed framework on an exam-
ple graph in Figure 2, which consists of two modules: invariant
representation learning and bootstrapped representation learning.

In the invariant learning part, we adopt Variance Risk Extrap-
olation [13] to train the GNN model for OOD generalization. The
training environments are constructed by data augmentation on
graphs. In the bootstrapped learning part, the online encoder is
jointly trained with the shared encoder and the classifier in the
training phase. The shared encoder is separately updated in the test
phase to obtain a better representation on the test set.

3.2 Invariant Representation Learning
Firstly, we construct multiple training environments from the orig-
inal training graph Gtrain = (X,A). We perform two typical graph
augmentations, namely node feature masking [41] and DropE-
dge [24], denoted by 𝜂 (·).

𝜂𝑒 (X,A) =
(
X̃𝑒 , Ã𝑒

)
, 𝑒 = 1, . . . , 𝑀 (5)

Next, we train a GNN encoder 𝑓𝜔 () to extract features from the
graphs under different training environments. 𝑓𝜔 : (X,A) → R𝑑 is
a 𝐿-layer graph neural networks and outputs 𝑑-dimension repre-
sentation for each node. In layer 𝑙 (𝑙 = 1, . . . , 𝐿), the representation
for node 𝑖 under environment 𝑒 is defined by Eq. (6), where N𝑒 (𝑖)
indicates the neighbor set of node 𝑖 decided by Ã𝑒 , and h(0)

𝑒,𝑖
is de-

fined by X̃𝑒 . The encoder parameterized by 𝜔 is shared by all the
training environments.

h(𝑙)
𝑒,𝑖

= AGGREGATE
(
h(𝑙−1)
𝑒,𝑖

,

{
h(𝑙−1)
𝑒,𝑗

| 𝑗 ∈ N𝑒 (𝑖)
}
|𝜔 (𝑙)

)
(6)

Following that, a GNN-based classifier 𝑓𝜓 : (R𝑑 ,A) → Y is
trained to get the final prediction. The GNN parameterized by
(𝜔,𝜓) is trained by minimizing the cross-entropy loss defined by
Eq. (7).

R𝑒 (𝜔,𝜓) = −
1
𝑁

𝑁∑︁
𝑖=1

𝐶∑︁
𝑗=1

Y𝑖 𝑗 log
[
𝑓𝜓

(
𝑓𝜔

(
X̃𝑒 , Ã𝑒

))]
𝑖 𝑗

(7)

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yang Liu et al.

Training Environments Construction

Invariant Representation Learning

Bootstrapped Representation Learning

Encoder

𝑓𝜔(∙)

𝜂1(∙)

Classifier

𝑓𝜓(∙)

Online

𝑔𝜃(∙)

𝜂𝑒(∙)

𝜂𝑀(∙)

𝒢 = (𝐗, 𝐀)

(෩𝐗1, ෩𝐀1)

(෩𝐗𝑒 , ෩𝐀𝑒)

(෩𝐗𝑀, ෩𝐀𝑀)
Encoder

𝑓𝜔(∙)

Encoder

𝑓𝜔(∙)
Variance Risk

Extrapolation

Mean

Squared

Error

Target

𝑔𝜉(∙)

Predictor

𝑞𝜃(∙)

Shared

Shared EMA

Figure 2: The framework of FLOOD on an example graph. The input graph is augmented to construct𝑀 training environments.
The shared encoder outputs the representations of nodes in each environment and then forwards to the classifier. Variance
risk extrapolation is applied among these environments to improve the generalization. The bootstrapped learning component
trains the online encoder with the target to be the output of the target encoder. During the test phase, the parameters of the
shared encoder are optimized under the self-supervised task on the test set.

To seek for good OOD generalization, we adopt the principle of
Risk Extrapolation (REx). We aim to reduce the training risks but
also increase the similarity of training risks. By encouraging equal-
ity of training risks, the risks are more likely to change less when
the distribution shift happens at test time. Minimax-REx builds
an affine combination of training risks with bounded coefficients
as shown in Eq. (8). 𝑀 is the number of environments, and the
hyperparameter 𝜆𝑚𝑖𝑛 controls how much we extrapolate.

RMM−REx (𝜔,𝜓) � max
Σ𝑒𝜆𝑒=1
𝜆𝑒≥𝜆min

𝑀∑︁
𝑒=1

𝜆𝑒R𝑒 (𝜔,𝜓)

= (1 −𝑀𝜆min)max
𝑒
R𝑒 (𝜔,𝜓) + 𝜆min

𝑀∑︁
𝑒=1
R𝑒 (𝜔,𝜓)

(8)

Practically, as there is a maximum in Eq. (8), it is hard and unsta-
ble to optimize RMM−REx. To tackle the problem, we simply replace
the maximum with the variance of risks and obtain RV−REx as
Eq. (9) shows, where 𝛽 ∈ [0, +∞) controls the balance between
reducing average risk and enforcing equality of risks.

RV−REx (𝜔,𝜓) � 𝛽 Var ({R1 (𝜔,𝜓), . . . ,R𝑀 (𝜔,𝜓)}) +
𝑀∑︁
𝑒=1
R𝑒 (𝜔,𝜓)

(9)
3.3 Bootstrapped Representation Learning
As stated in Section 1, we design a self-supervised task to help
the model fit the new test distribution. In the training phase, the

self-supervised task will be trained jointly with the classification
task with a shared graph encoder. In the test phase, we perform self-
supervised learning on the test set to finetune the shared encoder
for a better representation on the test set. To achieve this, the self-
supervised task must be computationally efficient and capable of
being trained within a few gradient descent steps. Although graph
contrastive learning is widely utilized in self-supervised learning on
graphs, it incurs a high computational and memory cost associated
with negative sampling. Instead, we adopt Bootstrap Your Own
Latent (BYOL) [5] in our framework, which learns to predict the
target view from a different augmented view, obviating the need
for negative samples.

Basically, BYOL produces two augmented views of the graph. We
randomly choose two from Eq. (5), namely 𝜂𝑖 (X,A) and 𝜂 𝑗 (X,A),
𝑖, 𝑗 = 1, . . . , 𝑀 . As shown in Figure 2, two graph encoders with the
same architecture but different weights are maintained for these
two views. An online encoder 𝑔𝜃 is designed for the online view(
X̃𝑖 , Ã𝑖

)
and a target encoder 𝑔𝜉 is for the target view

(
X̃𝑗 , Ã𝑗

)
,

where 𝜃 and 𝜉 denote two distinct sets of parameters.
The target encoder provides the regression targets to train the

online encoder, and the target representation is denoted as Z𝜉 =

𝑔𝜉

(
𝑓𝜔

(
X̃𝑗 , Ã𝑗

))
. The online representation Z𝜃 = 𝑔𝜃

(
𝑓𝜔

(
X̃𝑖 , Ã𝑖

))
is fed into a predictor 𝑞𝜃 that outputs a prediction of the target
representation. The online parameter 𝜃 is optimized by minimizing
the mean squared loss for the target prediction as Eq. (10) shows.

FLOOD: A Flexible Invariant Learning Framework for Out-of-Distribution Generalization on Graphs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

L(𝜃, 𝜔) = 1
𝑁

𝑁∑︁
𝑘=1

 𝑞𝜃
(
Z𝜃,𝑘

)

𝑞𝜃 (
Z𝜃,𝑘

)

2
−

Z𝜉,𝑘

Z𝜉,𝑘

2

2

2

=
2
𝑁

𝑁∑︁
𝑘=1

[
1 −

〈
𝑞𝜃

(
Z𝜃,𝑘

)
,Z𝜉,𝑘

〉

𝑞𝜃 (
Z𝜃,𝑘

)

2 ·

Z𝜉,𝑘

2

]
.

(10)

The target encoder is not updated by gradient descent and its
parameters 𝜉 are an exponential moving average (EMA) of the
online parameters 𝜃 . More precisely, given a target decay rate 𝜏 ∈
[0, 1], after each training step 𝜉 are updated as Eq. (11) shows.

𝜉 ← 𝜏𝜉 + (1 − 𝜏)𝜃 (11)

In the training phase, both invariant learning and bootstrapped
learning are jointly optimized under the overall loss as Eq. (12)
shows, where 𝛼 is a balanced parameter.

min
𝜃,𝜔,𝜓

Ltrain = L(𝜃, 𝜔) + 𝛼RV−REx (𝜔,𝜓) (12)

In the testing phase, 𝛿 steps of gradient descent are applied to
the parameter of the shared graph encoder 𝜔 by minimizing the
mean squared loss on the test graph Gtest as Eq. (13) shows.

min
𝜔
Ltest = L(𝜃, 𝜔) |Gtest (13)

3.4 Overall Algorithm and Complexity Analysis
The overall training algorithm is summarized in Algorithm 1. Given
a training graph Gtrain and a testing graph Gtest, we first construct
𝑀 training environments by graph data augmentation (Line 1).
With the GNNs initialized (Line 2), we get the node representation
under each environment after the feedforward process (Line 5).
The bootstrapped learning is conducted among two augmented
views (Line 6). After that, the model is trained until convergence by
minimizing Eq. (12) (Line 7), and the parameters of target encoder
are updated by moving average (Line 8). During the test phase, we
construct two views from Gtest and perform bootstrapped learning
for 𝛿 steps (Line 11). Finally, the shared encoder is updated by
minimizing Eq. (13) (Line 11).

Consider a graph with 𝑁 nodes and 𝐸 edges, the average de-
gree is 𝑑 . GNN with 𝐿 layers compute embeddings in time and
space 𝑂 (𝑁𝐿𝑑2). FLOOD does𝑀 + 2 encoder computations per up-
date step (2 for target/online encoders, and 𝑀 for each training
environment) plus a prediction step. As there is no negative sam-
pling, the overall time complexity is linear to the scale of the graph
𝑂 ((𝑁𝐿𝑑2) ∗ (𝑀 + 2)).

4 EXPERIMENTS
In this section, we investigate the effectiveness of the proposed
FLOOD model on both transductive and inductive graph OOD set-
tings, with the aim of answering the following research questions.
• RQ1: Does FLOOD outperform the state-of-the-art methods
for out-of-distribution generalizations on graphs?
• RQ2: How do the key components contribute to the results?
• RQ3: How does test-time training improve the generaliza-
tion of GNNs?

Algorithm 1: FLOOD: Flexible invariant Learning frame-
work for Out-Of-Distribution generalization on graphs
Input: Gtrain: training graph, Gtest: testing graph, Y: Label

of training nodes,𝑀 : Number of training
environments, 𝑁epoch: Number of training epochs, 𝐿:
Number of GNN layers, 𝜏 : Moving average decay
rate, 𝛿 : Test-time training steps, 𝛼, 𝛽 : Balancing
parameters for the loss.

Output: The prediction for Gtest.
1 Construct𝑀 training environments by Eq. (5);
2 Initialization parameters 𝜔 ,𝜓 , and 𝜃 ;
3 repeat
4 for 𝑒 = 1, . . . , 𝑀 do
5 Get the representation h(𝐿)

𝑒,𝑖
for nodes of G𝑒 w.r.t. Eq.

(6);
6 Get Z𝜃 and Z𝜉 of Gtrain from two augmented views;
7 Train 𝜔 ,𝜓 , and 𝜃 by minimizing Eq. (12);
8 Update 𝜉 by exponential moving average Eq. (11);
9 until Training epoch > 𝑁epoch;

10 Augment Gtest and get Z𝜃 and Z𝜉 of Gtest;
11 Train 𝜔 by minimizing Eq. (13) and keep𝜓 and 𝜃 frozen;
12 return 𝑓𝜓 (𝑓𝜔 (Gtest)).

• RQ4: What is the sensitivity of FLOOD with respect to the
number of training environments and gradient descent steps
during the test phase?

4.1 Experimental Setup
4.1.1 Datasets. We adopt four transductive node classification
datasets from GOOD [6], a graph out-of-distribution benchmark, to
verify the effectiveness of FLOOD in transductive settings. The in-
ductive experiments are conducted on a multi-graph dataset named
Twitch-explicit. The statistics of GOOD are shown in Table 1 and
the statistics of Twitch-explicit is in Table 2.

Table 1: Statistics of GOOD datasets for transductive tasks.

Dataset #Node #Edge #Class #Feat Domain

CBAS 700 3,962 4 4 Color
WebKB 617 1,138 5 1,703 University
Cora 19,793 126,842 70 8,710 Word/Degree
Arxiv 169,343 1,166,243 40 128 Time/Degree

Table 2: Statistics of Twitch-explicit for inductive tasks.

DE ES FR PTBR RU TW

Nodes 9,498 4,648 6,549 1,912 4,385 2,772
Edges 153,138 59,382 112,666 31,299 37,304 63,462
Density 0.003 0.006 0.005 0.017 0.004 0.017
Transit 0.047 0.084 0.054 0.131 0.049 0.057

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yang Liu et al.

Table 3: Performance Comparison for Transductive Node Classification under Covariate Shift

Dataset CBAS WebKB GOOD-Cora GOOD-Arxiv

Domain Color University Word Degree Time Degree

Covariate ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD

Base ERM 91.43 76.43 37.70 14.29 70.69 64.82 73.32 56.25 72.53 70.77 77.58 58.22

Invariant
Learning

IRM 91.43 78.57 42.62 16.67 71.00 65.09 73.72 56.02 72.56 71.26 77.51 58.98
VREx 92.86 78.57 36.07 16.67 70.79 64.77 73.32 56.28 72.58 71.25 77.73 58.95
GroupDRO 92.86 80.00 42.62 14.29 70.74 64.82 73.32 56.37 72.61 71.14 77.63 59.09

Domain
Generalization

DANN 94.29 74.29 42.62 15.25 70.69 64.77 73.32 56.20 72.48 71.16 77.38 59.19
DeepCoral 91.43 78.57 39.34 16.67 70.69 64.80 73.32 56.34 72.76 71.28 77.75 59.20

Augmentation Mixup 80.34 72.86 50.82 18.63 71.70 65.19 74.33 56.28 72.52 71.03 77.60 57.90

Graph OOD
SRGNN 87.14 71.43 42.62 13.32 70.14 64.32 71.00 53.88 72.25 70.77 76.05 57.66
EERM 84.29 70.00 47.54 17.06 69.98 62.55 73.32 56.40 OOM OOM OOM OOM

Ablation
FLOOD\Inv 90.26 75.78 42.31 15.34 70.23 63.23 73.23 56.32 72.41 70.21 77.42 56.82
FLOOD\TtT 90.35 79.23 42.56 17.43 70.57 64.57 72.45 56.21 72.12 71.23 77.23 58.27

Ours FLOOD 91.34 83.53 43.72 18.95 70.35 66.23 73.24 56.64 72.44 72.13 77.81 59.47

4.1.2 Compared Methods. We compare FLOOD with traditional
invariant learning methods (IRM [1], VREx [13], GroupDRO [27]),
domain generalization methods (DANN [4], DeepCoral [30]), graph
data augmentation methods (Mixup [35]), and graph OOD meth-
ods (SRGNN [43], EERM [36]). Details are found in Appendix B.

We also derive two variants of FLOOD to analyze the perfor-
mances of each component. They are FLOOD\Inv that removes
invariant learning and performs test-time training on the GNN
trained on the original graph, and FLOOD\TtT that removes test-
time training and uses the invariant model to make a prediction.

4.1.3 Implementation Details. FLOOD is implemented in Pytorch
1.9.0 [21] with Python 3.8, and all the experiments run on a Ubuntu
18.04.1 server with 40 cores and 512GB memory. IRM, VREx, Group-
DRO, DANN, and DeepCoral are based on the implementation of
GOOD [6]. Mixup, SRGNN, and EERM are implemented using the
source code provided by the authors. We report the average value
of 5 runs for all the compared methods. For all compared methods
and FLOOD, we adopt GCN as the backbone in the transductive
settings, the same settings as GOOD does, for a fair comparison.
And we adopt GAT as the backbone in the inductive settings, which
is consistent with EERM.

For transductive datasets, GOOD has original splits for envi-
ronment construction, and methods like IRM, VREx, GroupDRO,
and DANN use the splits in the datasets. FLOOD further augments
the environments with graph data augmentation methods. Dif-
ferent from that, the inductive dataset Twitch does not have an
environment split thus all the compared methods share the same
environments as done by FLOOD.

4.1.4 Hyper-parameter Settings. The parameters of FLOOD are
optimized with RMSprop [26] optimizer with learning rate lr=1e-3.
Hyper-parameter tuning is conducted using grid search for most
methods. In FLOOD, 𝑁epoch = 300, 𝜏 = 0.99, 𝐿 = 3, 𝛿 = 10, 𝛼 = 1,
𝛽 = 1. For GOOD-CBAS, 𝑀 = 10 for both covariate shift and

concept shift. For other datasets in transductive tasks,𝑀 = 10 for
covariate shift, and𝑀 = 3 for concept shift. For Twitch,𝑀 = 6 for
inductive tasks.

4.1.5 Metrics. For transductive node classification, we adopt Ac-
curacy to measure the performance of all the compared methods
since all the benchmarks are multi-class classifications. For induc-
tive node classification, we adopt both AUC and Accuracy to
measure the performance since it is a binary classification. For both,
higher scores indicate better performance of an approach.

4.2 Performance Comparison (RQ1)
To answer RQ1, we evaluate the performance of FLOOD on both
transductive and inductive node classification tasks. The scores
of IID and OOD are reported in Table 3-5. We have the following
observations.

Firstly, FLOOD outperforms current state-of-the-art methods
due to its flexibility during the test phase. EERM achieves the SOTA
performance for multi-graph generalization in Table 5. Although
FLOOD does not optimize the generator for environment genera-
tion, fine-tuning the parameters of the encoder can also improve the
generalization ability on the target distribution and achieve the best
performance. In contrast, EERM does not achieve the second-best
performance for transductive tasks in Table 3 and Table 4. This is
because the environments used in EERM are generated by trained
generators for larger variance, whereas other methods utilize the
split provided by the dataset, which is closely related to the spurious
domain. Our environmental construction with data augmentation
can outperform the trained generator as well.

Secondly, the compared methods exhibit different performances
under different distribution shifts. Traditional invariant methods
like IRM and VREx work well for both covariate shift and con-
cept shift, but cannot handle the inductive node classification. The

FLOOD: A Flexible Invariant Learning Framework for Out-of-Distribution Generalization on Graphs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 4: Performance Comparison for Transductive Node Classification under Concept Shift

Dataset CBAS WebKB GOOD-Cora GOOD-Arxiv

Domain Color University Word Degree Time Degree

Concept ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD

Base ERM 90.00 81.43 63.33 26.61 65.90 64.35 69.00 61.09 74.86 67.35 75.06 62.29

Invariant
Learning

IRM 90.71 82.52 61.67 27.23 65.96 64.40 68.04 61.23 74.37 67.40 75.38 62.49
VREx 90.00 82.14 63.33 28.44 65.90 64.37 68.93 61.10 74.74 67.29 74.96 62.72
GroupDRO 89.29 83.57 63.33 29.92 66.09 64.49 68.87 61.12 74.51 67.47 75.22 62.63

Domain
Generalization

DANN 90.00 82.71 63.33 26.61 65.83 64.53 68.93 61.03 74.76 67.03 74.91 62.55
DeepCoral 90.00 81.43 63.21 28.42 66.09 64.49 69.13 61.14 74.82 67.62 75.07 62.49

Augmentation Mixup 93.57 64.29 63.33 30.28 70.58 64.77 70.15 63.12 74.74 65.17 72.28 60.10

Graph OOD
SRGNN 90.00 80.71 68.33 25.69 65.96 65.20 69.26 60.62 74.56 67.15 74.81 62.07
EERM 81.43 62.14 63.33 26.53 65.06 62.66 65.85 58.23 OOM OOM OOM OOM

Ablation
FLOOD\Inv 90.25 82.35 63.24 25.23 65.32 64.24 68.34 61.24 74.32 67.21 74.21 62.34
FLOOD\TtT 90.32 82.31 63.56 28.35 65.82 64.46 68.23 61.23 74.21 67.12 74.23 62.52

Ours FLOOD 90.47 84.25 63.72 31.95 65.85 65.23 68.24 63.64 74.24 67.93 74.81 63.47

Table 5: Performance Comparison for Inductive Node Classification under Distribution Shift

Dataset ES FR PTBR RU TW

Metric AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc

ID 68.23 58.47 68.69 66.75 69.12 65.61 64.76 63.60 64.81 62.48

Base ERM 62.10 45.59 62.12 42.41 62.60 50.71 50.25 38.52 51.29 40.95

Invariant
Learning

IRM 63.50 49.97 62.74 43.53 63.69 51.85 55.19 39.33 51.90 41.47
VREx 64.53 43.98 62.37 46.02 64.20 51.77 52.76 41.29 54.80 42.40
GroupDRO 64.78 50.76 62.48 46.56 64.22 51.91 55.60 43.41 54.72 40.79

Domain
Generalization

DANN 62.20 43.19 62.62 46.69 64.55 47.03 55.50 44.32 54.19 41.59
DeepCoral 63.03 43.61 62.75 46.53 64.73 47.92 55.75 44.63 54.82 42.39

Augmentation Mixup 62.28 47.07 60.95 40.92 61.73 46.81 54.76 35.63 56.98 44.24

Graph OOD
SRGNN 63.30 42.72 60.38 43.65 60.69 54.28 54.53 41.04 55.45 42.11
EERM 65.18 51.74 63.04 46.86 64.91 51.49 56.68 44.91 58.77 46.07

Ablation
FLOOD\Inv 63.63 42.74 62.36 43.21 62.12 51.43 52.52 40.21 52.37 40.21
FLOOD\TtT 64.32 43.84 63.45 46.23 64.23 52.32 53.25 42.53 55.21 42.93

Ours FLOOD 66.77 54.95 65.48 48.66 65.59 56.98 57.13 45.80 59.93 48.99

reason is that the split is based on the spurious domain for the trans-
ductive datasets and seeking similar performance across various
environments would help with the generalization. However, for
the inductive dataset, the shift domain is unknown and the envi-
ronments are from data augmentation. Invariant learning methods
rely on environment construction and thus perform worse than
those regularization-based methods like DANN and SRGNN. The
bootstrapped learning component in FLOOD, therefore, leads to
better generalization performance on inductive tasks compared to
transductive tasks.

Finally, data augmentation methods can be helpful for OOD gen-
eralization in some cases but they can also degrade the performance

if not used properly. For the results of covariate shift in Table 3,
Mixup can achieve the second-best results for GOOD-WebKB and
GOOD-Cora-Word. The results indicate that data augmentation can
enrich the training distribution for better generalization. In contrast,
for GOOD-CBAS and GOOD-Arxiv-Degree, the effectiveness of
Mixup is negative. The possible reason is that the augmented views
are spuriously correlated to the shift domain like degree, making
the generalization even worse than ERM. FLOOD can mitigate the
limitation of data augmentation because it can flexibly adapt the
encoder to the target distribution during the test phase.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yang Liu et al.

(a) FLOOD w/o TtT (b) FLOOD w TtT

Figure 3: Visualization of FLOOD on GOOD-CBAS without
and with test-time training.

4.3 Ablation Study (RQ2)
To answer RQ2, we evaluate two key modules of FLOOD, namely
invariant representation learning and bootstrapped representation
learning, by removing each module respectively. We report the
ablation results of transductive tasks in Table 3 and 4 and the re-
sults of inductive tasks are in Table 5. The full model FLOOD al-
ways achieves the best scores compared with the two variants,
FLOOD\Inv and FLOOD\TtT, indicating that each module is neces-
sary for OOD generalization.

Removing the bootstrapped learning part, FLOOD\TtT does not
have test-time training steps during the test phase and achieves
comparable performance to that of VREx or GroupDRO. The per-
formance of FLOOD\TtT declines larger in the inductive tasks than
that in the transductive tasks, which indicates that test-time train-
ing contributes more when the spurious domain is unavailable such
as the multi-graph generalization.

Without the invariant learning part, FLOOD\Inv just finetunes
the GNN encoder by BYOL during the test phase and the results
show that the performance degradation is even larger than that
of FLOOD\TtT. We conclude that combining test-time training
with invariant learning contributes more to the improvement of
generalization.

4.4 Visualization (RQ3)
To answer RQ3, we visualize the output of the shared encoder on
GOOD-CBAS without and with the test-time training in Figure 3
(The color indicates the node label). It is shown that the shared
encoder fine-tuned by FLOOD learns more discriminative represen-
tations, thanks to the bootstrapped learning during the test phase.
These highly discriminative representations potentially help to im-
prove the generalization ability of the classifier on the test set than
the less discriminative ones without test-time training.

4.5 Sensitivity Analysis (RQ4)
To answer RQ4, we further evaluate the sensitivity of FLOOD with
respect to the number of training environments and the number
of gradient steps during the test phase. Due to the limited space,
we only report the results of GOOD-Cora and GOOD-Arxiv for the
transductive tasks for better visualization. For the inductive tasks,
we only report ES, FR, and PTBR for demonstration. Other datasets
also exhibit similar trends of sensitivity.

The number of training environments is closely related to risk
extrapolation, which has been defined in Section 3.2. We evaluate

the sensitivity of FLOOD on GOOD-Cora and GOOD-Arxiv under
covariate shift in Figure 4(a) and concept shift in Figure 4(b). GOOD
provides 10 training environments for covariate shift and 3 envi-
ronments for concept shift, thus we set the range to be 2 to 10 with
step 2 for covariate shift and 1 to 5 with step 1 for concept shift1.
The sensitivity on the inductive task is in Figure 4(c) and the range
is 2 to 10 with step 2 as well.

For the covariate shift and concept shift, the number of environ-
ments to achieve the best performance equal the provided number
in the GOOD benchmark, 10 and 3, respectively. As demonstrated
in Figure 4(b), increasing the number of training environments
does not gain much improvement, while decreasing the number
would hurt the performance. Because a smaller number of train-
ing environments may not cover the extrapolated distribution for
generalization. For inductive tasks, the optimal number is 6, and
differently, increasing the number in inductive tasks would hurt the
performance a lot. This is because the distribution shift in inductive
tasks is not related to a single spurious domain. Too many environ-
ments will make it harder to learn a good invariant representation.

The number of gradient steps during the test phase decides how
much we update the shared encoder to adapt to the test distribution.
As shown in Figure 4(d) to Figure 4(e), the performance improves
as the number of gradient steps increases, reaches a peak, and then
begins to decline. The best performance is achieved at around 10
for all three settings. If the number of gradient descent exceeds
30, though the shared encoder may fit the target distribution, the
classifier trained on the training environments will not perform
well, as the over-updated representations will deviate from the
learned latent space.

5 RELATEDWORK
Out-of-distribution Generalization. Out-of-Distribution (OOD)
generalization problem addresses the challenging setting where
the testing distribution is unknown and different from that of the
training. Several kinds of strategies can be applied to tackle OOD
generalization [28]. Causal inference aims to learn variables in the
causal graph in an unsupervised or semi-supervised way. With
the learned causal representation, one can capture the latent data
generation process, which can help to resist the distributional shifts
induced by interventions. Peters et al. [22] first try to investigate
the fact that “invariance” could infer the causal structure under
necessary conditions and propose Invariant Causal Prediction (ICP).

Deriving from causal inference-based methods, invariant learn-
ing methods, typified by invariant risk minimization(IRM, [1]),
target on latent causal mechanisms and extend ICP to more prac-
tical settings. VREx [13] encourages reducing training risks while
increasing the similarity of training risks under the variance risk ex-
trapolation paradigm. GroupDRO [27] learns models that minimize
the worst-case training loss over a set of pre-defined groups.

Test-time training [20, 31] is an emerging paradigm to solve
OOD generalization problems. It trains the model on both the main
task and the self-supervised learning task, and updates the model
based only on the SSL task at test time.

1We perform different data augmentation on the three given environments to construct
five environments for evaluation.

FLOOD: A Flexible Invariant Learning Framework for Out-of-Distribution Generalization on Graphs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

(a) Acc for covariate shift with different numbers of
environments

(b) Acc for concept shift with different numbers of
environments

(c) Acc for inductive tasks with different numbers of
environments

(d) Acc for covariate shift with different gradient
steps during the test phase

(e) Acc for concept shift with different gradient steps
during the test phase

(f) Acc for inductive tasks with different gradient
steps during the test phase

Figure 4: Sensitivity of FLOOD w.r.t the number of training environments (a-c) and the number of gradient steps during the test
phase (d-f). The marker point represents the mean value of 5 runs, and the shaded area corresponds to the standard deviation.

Themethods mentioned above improve the generalization ability
of current models for out-of-distribution generalization. Different
from them, our major concern in this work is the out-of-distribution
problem on graphs. The principle is applicable but the environment
is more complicated due to the complex structure of the graphs.

Out-of-distribution Generalization on Graphs. Graph OOD
generalization can be more complex because distribution shifts
on graphs can appear in a variety of forms such as attributes and
structures, making it difficult to identify the invariance. Moreover,
environment construction or inference, which are often required
by OOD methods on Euclidean data, can be highly expensive to
obtain for graphs due to the structural relationship of the nodes.

Zhou et al. [42] theoretically studied the ability of GNNs to
achieve counterfactually-invariant representations for inductive
OOD link prediction tasks. GIL [14] can capture the invariant re-
lationships between predictive graph structural information and
labels in a mixture of latent environments by jointly optimizing
three tailored modules. DIR [38] discovers causal rationales that
are invariant across different distributions to improve generaliza-
tion. CIGA [3] characterizes distribution shifts with causal models.
MoleOOD [39] enhances the robustness of molecule learning and
can infer the environment in a data-driven manner. SR-GNN [43]
is designed to account for distributional differences between biased
training data and a graph’s true inference distribution. EERM [36]
trains multiple context generators to maximize the variance of risks
from multiple virtual environments so the model can explore to
extrapolate from a single observed environment.

GIL, DIR, MoleOOD, and gMPNN investigate different tasks for
OOD generalization on graphs like graph classification and link
prediction. Different from them, we consider the OOD problem of
node-level tasks on graphs. EERM and SRGNN can be applied to
node-level tasks but FLOOD is more flexible since its encoder can
be refined for better generalization during the test phase.

6 CONCLUSION
In this study, we investigated the issue of out-of-distribution (OOD)
generalization in graph representation learning and proposed a
new solution, FLOOD, which combines invariant representation
learning and bootstrapped representation learning. Our method
aims to find a balance between stability across different training
environments and adaptability to the test distribution. By using
invariant representation learning, FLOOD learns a generalized rep-
resentation that is robust to variations in the training environment.
The bootstrapped representation learning component then allows
the model to further adapt to the test distribution by conducting
self-supervised learning during the test phase.

ACKNOWLEDGMENTS
The research work is supported by National Key R&D Plan No.
2022YFC3303302, National Natural Science Foundation of China
under Grant (No.61976204). Xiang Ao is also supported by the
Project of Youth Innovation Promotion Association CAS, Beijing
Nova Program Z201100006820062.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yang Liu et al.

REFERENCES
[1] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. 2019.

Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019).
[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[3] Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, MA KAILI, Binghui
Xie, Tongliang Liu, Bo Han, and James Cheng. 2022. Learning Causally Invariant
Representations for Out-of-Distribution Generalization on Graphs. In Advances
in Neural Information Processing Systems.

[4] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. The journal of machine learning
research 17, 1 (2016), 2096–2030.

[5] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan
Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap your own latent-a new
approach to self-supervised learning. Advances in neural information processing
systems 33 (2020), 21271–21284.

[6] Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. 2022. Good: A graph out-
of-distribution benchmark. Advances in Neural Information Processing Systems
(2022).

[7] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[8] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2020. Strategies for pre-training graph neural networks. In
International Conference on Learning Representations.

[9] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1857–1867.

[10] Mengda Huang, Yang Liu, Xiang Ao, Kuan Li, Jianfeng Chi, Jinghua Feng, Hao
Yang, and Qing He. 2022. Auc-oriented graph neural network for fraud detection.
In Proceedings of the ACM Web Conference 2022. 1311–1321.

[11] Yuanfeng Ji, Lu Zhang, JiaxiangWu, Bingzhe Wu, Long-Kai Huang, Tingyang Xu,
Yu Rong, Lanqing Li, Jie Ren, Ding Xue, et al. 2022. DrugOOD: Out-of-Distribution
(OOD) Dataset Curator and Benchmark for AI-aided Drug Discovery–A Fo-
cus on Affinity Prediction Problems with Noise Annotations. arXiv preprint
arXiv:2201.09637 (2022).

[12] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[13] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan
Binas, Dinghuai Zhang, Remi Le Priol, and Aaron Courville. 2021. Out-of-
distribution generalization via risk extrapolation (rex). In International Conference
on Machine Learning. PMLR, 5815–5826.

[14] Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. 2022. Learning invariant
graph representations for out-of-distribution generalization. Advances in Neural
Information Processing Systems (2022).

[15] Kuan Li, Yang Liu, Xiang Ao, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He.
2022. Reliable representations make a stronger defender: Unsupervised structure
refinement for robust gnn. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 925–935.

[16] Kuan Li, Yang Liu, Xiang Ao, and Qing He. 2023. Revisiting Graph Adversar-
ial Attack and Defense From a Data Distribution Perspective. In The Eleventh
International Conference on Learning Representations.

[17] Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and
Jian Tang. 2022. Pre-training molecular graph representation with 3d geometry.
In International Conference on Learning Representations.

[18] Yang Liu, Xiang Ao, Fuli Feng, and Qing He. 2022. UD-GNN: Uncertainty-aware
debiased training on semi-homophilous graphs. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 1131–1140.

[19] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing
He. 2021. Pick and choose: a GNN-based imbalanced learning approach for fraud
detection. In Proceedings of the Web Conference 2021. 3168–3177.

[20] Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor
Mordan, and Alexandre Alahi. 2021. Ttt++: When does self-supervised test-time
training fail or thrive? Advances in Neural Information Processing Systems 34
(2021), 21808–21820.

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
NeurIPS.

[22] Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. 2016. Causal inference
by using invariant prediction: identification and confidence intervals. Journal of
the Royal Statistical Society. Series B (Statistical Methodology) (2016), 947–1012.

[23] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748–8763.

[24] Yu Rong,Wenbing Huang, Tingyang Xu, and JunzhouHuang. 2020. Dropedge: To-
wards deep graph convolutional networks on node classification. In International
Conference on Learning Representations.

[25] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed
node embedding. Journal of Complex Networks 9, 2 (2021), cnab014.

[26] Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747 (2016).

[27] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. 2020.
Distributionally robust neural networks for group shifts: On the importance
of regularization for worst-case generalization. In International Conference on
Learning Representations.

[28] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and
Peng Cui. 2021. Towards out-of-distribution generalization: A survey. arXiv
preprint arXiv:2108.13624 (2021).

[29] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian
Tang. 2020. Graphaf: a flow-based autoregressive model for molecular graph
generation. In International Conference on Learning Representations.

[30] Baochen Sun and Kate Saenko. 2016. Deep coral: Correlation alignment for
deep domain adaptation. In Computer Vision–ECCV 2016 Workshops: Amsterdam,
The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14. Springer,
443–450.

[31] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz
Hardt. 2020. Test-time training with self-supervision for generalization under
distribution shifts. In International conference on machine learning. PMLR, 9229–
9248.

[32] Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. 2022. Rethinking graph neural
networks for anomaly detection. In International Conference on Machine Learning.
PMLR, 21076–21089.

[33] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not
enough. Quantitative Science Studies 1, 1 (2020), 396–413.

[34] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[35] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. 2021. Mixup
for node and graph classification. In Proceedings of the Web Conference 2021.
3663–3674.

[36] Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. 2022. Handling Distri-
bution Shifts on Graphs: An Invariance Perspective. In International Conference
on Learning Representations.

[37] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural
networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.

[38] Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. 2022.
Discovering invariant rationales for graph neural networks. In International
Conference on Learning Representations.

[39] Nianzu Yang, Kaipeng Zeng, QitianWu, Xiaosong Jia, and Junchi Yan. 2022. Learn-
ing substructure invariance for out-of-distribution molecular representations. In
Advances in Neural Information Processing Systems.

[40] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. Gnnexplainer: Generating explanations for graph neural networks. Ad-
vances in neural information processing systems 32 (2019).

[41] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
neural information processing systems 33 (2020), 5812–5823.

[42] Yangze Zhou, Gitta Kutyniok, and Bruno Ribeiro. 2022. OOD Link Prediction
Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs.
Advances in Neural Information Processing Systems (2022).

[43] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. 2021. Shift-robust
gnns: Overcoming the limitations of localized graph training data. Advances in
Neural Information Processing Systems 34 (2021), 27965–27977.

FLOOD: A Flexible Invariant Learning Framework for Out-of-Distribution Generalization on Graphs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

A DATASETS
We adopt four transductive node classification datasets from the
graph OOD benchmark GOOD [6] to verify the effectiveness of
FLOOD in transductive settings. The inductive experiments are
conducted on a multi-graph dataset named Twitch-explicit.

GOOD-CBAS is a synthetic datasetmodified fromBA-Shapes [40].
The input is a graph created by attaching 80 house-like motifs to a
300-node Barabási–Albert base graph and the task is to predict the
role of nodes, including the top/middle/bottom node of a house-like
motif or the node from the base graph, forming a 4-class classi-
fication task. Different from BA-Shapes, CBAS includes colored
features as spurious features that OOD algorithms need to tackle
node color differences in covariate splits and color-label correlations
in concept splits.

GOOD-WebKB is a graph of university webpage. Nodes are uni-
versity web pages and edges are hyperlinks between them. Node
features are bag-of-words representations of the webpages. Node
labels are one of student, project, course, staff, or faculty. The OOD
split is conducted based on the university domain but the classifi-
cation relies on the webpage.

GOOD-Cora is a citation network labeled on the paper topic.
The input is a small-scale citation network graph, in which nodes
represent scientific publications and edges are citation links. The
task is a 70-class classification of publication types. The OOD splits
are based on two domains, namely, word and degree. The first
one is the word diversity defined by the selected-wordcount of a
publication, purely irrelevant to the label. The second one is the
node degree in the graph, implying that the popularity of a paper
should not determine the class of a paper.

GOOD-Arxiv is the citation network between all Computer
Science (CS) arXiv papers indexed by MAG [33]. Each node is an
arXiv paper, and each directed edge indicates that one paper cites
another one. Each paper comes with a 128-dimensional feature
vector obtained by averaging the embeddings of words in its title
and abstract. The task is to predict the 40 subject areas of arXiv CS
papers, e.g., cs.AI, cs.LG, and cs.OS, which are manually labeled

by the paper’s authors and arXiv moderators. The OOD splits are
based on two domains, namely, time and degree.

Twitch-explicit [25] contains 7 networks where Twitch users
are nodes, and mutual friendships between them are edges. Node
features are games liked, location, and streaming habits. Each graph
is associated with users of a particular region. The class labels
denote whether a streamer uses explicit language. The model is
trained on DE, valid on EN, and tested on the other 5 graphs.

B COMPARED METHODS
• ERM [12]: graph convolution network optimized by empiri-
cal risk minimization.
• IRM [1]: includes a regularized objective enforcing simulta-
neous optimality of the same classifier in all environments.
• VREx [13]: encourages reducing training risks while in-
creasing the similarity of training risks under variance risk
extrapolation paradigm.
• GroupDRO [27]: learn models that minimize the worst-case
training loss over a set of pre-defined groups.
• DANN [4]: adversarially trains the regular classifier and a
domain classifier to make features indistinguishable.
• DeepCoral [30]: encourages features in different domains to
be similar by minimizing the deviation of covariant matrices
from different domains.
• Mixup [35]: a two-branch Mixup graph convolution to in-
terpolate the irregular graph topology.
• SRGNN [43]: includes both a regularization for address-
ing distribution shift in learnable layers and an instance
reweighting component which is capable of handling situ-
ations where a graph inductive bias is added after feature
encoding.
• EERM [36]: includes multiple context generators that are
adversarially trained to maximize the variance of risks from
multiple virtual environments and applies invariant learning
on these environments.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Distribution Shift
	2.2 Invariant Learning
	2.3 Problem Statement

	3 Methodology
	3.1 Overview
	3.2 Invariant Representation Learning
	3.3 Bootstrapped Representation Learning
	3.4 Overall Algorithm and Complexity Analysis

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance Comparison (RQ1)
	4.3 Ablation Study (RQ2)
	4.4 Visualization (RQ3)
	4.5 Sensitivity Analysis (RQ4)

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Datasets
	B Compared Methods

