

Lyon, France, 25-29 April 2022

AUC-oriented Graph Neural Network for Fraud Detection

Mengda Huang¹, Yang Liu¹, Xiang Ao^{1*}, Kuan Li¹, Jianfeng Chi², Jinghua Feng², Hao Yang², Qing He^{1*}

- Method: AO-GNN
- Experiments
- Conclusion

BACKGROUND: FRAUD DETECTION TASK

Fraud detection tasks become easier when discrete entities are built as graphs.

Task: Distinguish whether a node in a graph is a fraudulent node or a benign node.

BACKGROUND: CHALLENGES

Label Imbalance:

In practical scenarios, fraud samples are often very rare.

I got 99.9% accuracy by classifying all nodes as benign nodes!

Overfitting on Majority:

Such models are highly accurate but fail to learn from the data to identify fraudsters.

Find a metric unbiased to label distribution and maximize it!

> AUC-oriented training tends to obtain a model with the competitive ability for classifying both benign nodes and fraud nodes.

 $AUC(\mathcal{M}_\mathcal{G}^\omega) = \mathbb{P}(\mathcal{M}_\mathcal{G}(\omega;\mathbf{v}) \geq \mathcal{M}_\mathcal{G}(\omega;\mathbf{v}')|y_{\mathbf{v}}=1,y_{\mathbf{v}'}=0)$

$$AUC(\mathcal{M}_\mathcal{G}^\omega) = \mathbb{P}(\mathcal{M}_\mathcal{G}(\omega;\mathbf{v}) \geq \mathcal{M}_\mathcal{G}(\omega;\mathbf{v}')|y_{\mathbf{v}}=1,y_{\mathbf{v}'}=0)$$

Maximize its unbiased estimation

 $\min_{\omega \in \mathbb{R}^d} \; \mathbb{E}_{\mathbf{v},\mathbf{v}'}[(1\!-\!(\mathcal{M}_\mathcal{G}(\omega;\mathbf{v})\!-\!\mathcal{M}_\mathcal{G}(\omega;\mathbf{v}'))^2|y_{\mathbf{v}}\!=\!1,y_{\mathbf{v}'}\!=\!0]$

$$\min_{\omega \in \mathbb{R}^d} \mathbb{E}_{\mathbf{v},\mathbf{v}'}[(1\!-\!(\mathcal{M}_\mathcal{G}(\omega;\mathbf{v})\!-\!\mathcal{M}_\mathcal{G}(\omega;\mathbf{v}'))^2|y_{\mathbf{v}}\!=\!1,y_{\mathbf{v}'}\!=\!0]$$

THEOREM 1. The optimizing problem above is equivalent to $\min_{\substack{\omega \in \mathbb{R}^d, \{a,b\} \in \mathbb{R}^2}} \max_{\alpha \in \mathbb{R}} E_{\mathbf{v}} [\mathcal{L}_{AUC}(\omega, a, b, \alpha, \mathbf{v} | p)],$ where p is the ratio of fraud nodes, and

$$\begin{aligned} \mathcal{L}_{AUC}(\omega, a, b, \alpha, \mathbf{v} | p) &= \mathbb{I}(y = 1) [(1 - p)(\mathcal{M}_{\mathcal{G}}(\omega; \mathbf{v}) - a)^{2} \\ &+ 2(p - 1)(1 + \alpha)\mathcal{M}_{\mathcal{G}}(\omega; \mathbf{v})] \\ &+ \mathbb{I}(y = 0) [p(\mathcal{M}_{\mathcal{G}}(\omega; \mathbf{v}) - b)^{2} \\ &+ 2p(1 + \alpha)\mathcal{M}_{\mathcal{G}}(\omega; \mathbf{v})] + p(1 - p)\alpha^{2}. \end{aligned}$$

BACKGROUND: CHALLENGES

Polluted Topology:

Fraudulent nodes often confuse their identities by interacting with other nodes.

 $rg\max_{\omega,\Pi} AUC(\mathcal{M}^{\omega}_{\mathcal{G}}|\Pi)$

 \prod is a topological cleaner

Algorithm 1: AUC maximization with GNN

input : A multi-relation graph G, a GNN architecture \mathcal{M}_{G} 1 Initialize $\mathcal{M}_{G} \leftarrow \mathcal{M}_{G}^{\omega}$ with random parameters; 2 Initialize II as a random function; 3 while Break Condition is False do 4 $| \omega \leftarrow \arg \max_{\omega} AUC(\mathcal{M}_{G}^{\omega}|\Pi); // \text{Parameter searching}$ 5 $| \Pi \leftarrow \arg \max_{\Pi} AUC(\mathcal{M}_{G}^{\omega}|\Pi); // \text{Policy searching}$ 6 end return : A GNN \mathcal{M}_{G}^{ω} , Pruning policy II

AO-GNN: EDGE PRUNING MDP

- Parameter sharing: all policy networks to share a GNN layer
- Halting Mechanism: restrict the maximum number of deleting for each node
- Surrogate reward: reduces the complexity of returning reward from O(nlogn) to O(n)

$$\mathcal{R}(s, a, s') = F(y_{\mathbf{v}_c}) \cdot \begin{cases} |\{p_{\mathbf{v}} | p_{\mathbf{v}} \in (p_{\mathbf{v}_c}, p'_{\mathbf{v}_c}], y_{\mathbf{v}} \neq y_{\mathbf{v}_c}\}|, & p'_{\mathbf{v}_c} \ge p_{\mathbf{v}_c} \\ - |\{p_{\mathbf{v}} | p_{\mathbf{v}} \in [p'_{\mathbf{v}_c}, p_{\mathbf{v}_c}), y_{\mathbf{v}} \neq y_{\mathbf{v}_c}\}|, & p'_{\mathbf{v}_c} < p_{\mathbf{v}_c} \end{cases}$$

Our datasets vary in many dimensions. YelpChi: spam reviews detection Amazon: fraud users detection Books: fake-order item detection

Dataset	#Node	#Edge	Relations	Relation#Edges
YelpChi	45,954;	3,846,979	R-U-R	49,315
	14.5%		R-T-R	573,616
	Fraud		R-S-R	3,402,743
Amazon	11,944;	4,398,392	U-P-U	165,608
	9.5%		U-S-U	3,566,479
	Fraud		U-V-U	1,036,737
Books	1,418; 1.9%	3,695	Co-purchase	3,695

EXPERIMENT: PERFORMANCE COMPARISON

Method	Dataset	YelpChi		
	Metric	AUC	F1-macro	GMean
Baselines	GCN	0.5983±0.0049	0.5620 ± 0.0067	0.4365±0.0262
	GAT	0.5715±0.0029	0.4879 ± 0.0230	0.1659±0.0789
	GraphSAGE	0.5439 ± 0.0025	0.4405 ± 0.1066	0.2589±0.1864
	DR-GCN	0.5921±0.0195	$0.5523 {\pm} 0.0231$	0.4038 ± 0.0742
	GraphConsis	0.6983 ± 0.0302	0.5870 ± 0.0200	0.5857±0.0385
	CARE-GNN	0.7619 ± 0.0292	0.6332 ± 0.0094	0.6791±0.0359
	PC-GNN	0.8178 ± 0.0014	0.6400 ± 0.0230	0.7395 ± 0.0130
Ablation	$AO-GNN_{woP}$	0.8680 ± 0.0020	0.7182±0.0177	0.7484 ± 0.0125
	$AO-GNN_{woC}$	0.8545 ± 0.0177	0.7063 ± 0.0129	0.7305 ± 0.0241
	$AO-GNN_{R-P}$	0.8302 ± 0.0286	0.6936 ± 0.0351	0.7192 ± 0.0586
Ours	AO-GNN	0.8805±0.0008	0.7042 ± 0.0051	0.8134±0.0232

Method	Dataset	Amazon		
	Metric	AUC	F1-macro	GMean
Baselines	GCN	0.8369±0.0125	0.6408 ± 0.0694	0.5718±0.1951
	GAT	0.8102±0.0179	0.6464 ± 0.0387	0.6675 ± 0.1345
	GraphSAGE	0.7589 ± 0.0046	0.6416 ± 0.0079	0.5949 ± 0.0349
	DR-GCN	0.8295±0.0079	0.6488 ± 0.0364	0.7963 ± 0.0091
	GraphConsis	0.8741 ± 0.0334	0.7512 ± 0.0325	0.7677 ± 0.0486
	CARE-GNN	0.9067 ± 0.0112	0.8990±0.0073	0.8962 ± 0.0018
	PC-GNN	0.9586 ± 0.0014	0.8956 ± 0.0077	0.9030 ± 0.0044
Ablation	$AO-GNN_{woP}$	0.9588 ± 0.0008	0.8956 ± 0.0026	0.8740 ± 0.0137
	$AO-GNN_{woC}$	0.9392±0.0166	$0.8914 {\pm} 0.0041$	0.8828 ± 0.0267
	$AO-GNN_{R-P}$	0.9197 ± 0.0238	0.8827 ± 0.0135	0.8602 ± 0.0164
Ours	AO-GNN	0.9640±0.0020	0.8921±0.0045	0.9096±0.0105

RQ1 Does AO-GNN outperform state-of-the-art GNN-based fraud detection models?

RQ2 How significant are the classifier parameter searching and the edge pruning policy searching in boosting AUC?

Method	Dataset	Books		
	Metric	AUC	F1-macro	GMean
Baselines	GCN	0.4538±0.1977	0.2374 ± 0.2065	0.0000 ± 0.0000
	GAT	0.4006 ± 0.2023	0.2058 ± 0.1623	0.0000 ± 0.0000
	GraphSAGE	0.4761 ± 0.1508	0.2464 ± 0.2004	0.0000 ± 0.0000
	DR-GCN	0.5131±0.1579	0.3048 ± 0.2454	0.0000 ± 0.0000
	GraphConsis	0.5647 ± 0.1281	0.2912 ± 0.1325	0.0000 ± 0.0000
	CARE-GNN	0.6267 ± 0.0462	0.4050 ± 0.0996	0.4861 ± 0.0811
	PC-GNN	0.6431±0.0189	0.4951 ± 0.0037	0.5244 ± 0.1012
Ablation	AO-GNN _{woP}	0.6720 ± 0.0111	0.4131 ± 0.0102	0.4829 ± 0.0519
	$AO-GNN_{woC}$	0.5821±0.1397	0.2901 ± 0.2102	0.3711±0.1919
	$AO-GNN_{R-P}$	0.5604 ± 0.1733	0.2845 ± 0.2329	0.3068 ± 0.1240
Ours	AO-GNN	0.7174±0.0158	0.5503±0.0141	0.6127±0.0252

EXPERIMENT: AUC EVOLVING PROCESS STUDY

RQ3 How does AUC evolved in parameter searching?

 After each falling, the AUC curves gain a longer-lasting growth and higher upper bound

EXPERIMENT: PRUNED EDGES STUDY

RQ4 What kind of edges are easier to be pruned?

- R-U-R edges are hardly pruned in YelpChi.
- U-P-U edges are very noisy in Amazon.

RQ5 How effective are RL accelerating mechanisms?

- Surrogate loss accelerates trajectory simulating 25-30 times.
- Pruning 10 edges per node achieves best AUC improvement.

- We propose a novel GNN-based model for fraud detection from the standpoint of AUC maximization.
- We formulate neighbors choosing as an MDP with a theoretical guarantee of maximizing AUC and solve it by Deep RL.
- Experiments on three public datasets demonstrate that AO-GNN clearly outperforms the state-of-the-art baselines.

Lyon, France, 25-29 April 2022

AUC-oriented Graph Neural Network for Fraud Detection

Thanks for listening! Email: huangmengda19s@ict.ac.cn

sig web

