Alike and Unlike: Resolving Class Imbalance Problem in Financial Credit Risk Assessment

Yang Liu¹²; Xiang Ao^{1*}; Qiwei Zhong²; Jinghua Feng²; Jiayu Tang²; Qing He¹

² Alibaba Group

^{*} denotes corresponding author.

Content

- ➤ Background and Motivation
- ➤ Method ADAAR
- **≻**Experiment
- ➤ Conclusion and Future Work

➤ Credit Payment

- Promise to pay the bill before the due day
- Examples: Credit Card, Ant Credit Pay, PayPal Credit Pay

➤ Credit Risk Assessment

- Low-risk: repay the bill in-time
- High-risk: default, fraud, ...

>Importance

• High-risk payments account for **0.68%** of retail revenue in the U.S. but the fraud cost reached as high as **\$32 billion**.¹

¹ Annual report by LexisNexis. From http://www.lexisnexis.com/risk/downloads/assets/true-cost-fraud-2014.pdf

Motivation

- Credit risk assessment is a classimbalanced problem.
 - Majority class Low-risk users(>99%)
 - Minority class High-risk users(<1%)

>Solution:

• Data augmentation for the minority class.

➤ Objective:

- Alike the minority class
- Unlike the majority class

- Adversarial Data Augmentation method with Auxiliary discriminato R (ADAAR)
- >Alike the minority class
 - D_1 identifies real samples from fake samples
 - Adversarial loss for D_1 and G

$$\min_{D_1} \max_{G} \mathcal{L}_{adv} = -\sum_{x \in \mathcal{X}_{high}} \log(D_1(x)) - \sum_{z \in \mathcal{Z}} [1 - \log(D_1(G(z)))]$$

- **➤ Unlike** the majority class
 - D_2 discriminates low or high risk users
 - Cross-entropy loss for G and D_2

$$\min_{D_2, G} \mathcal{L}_{ce} = -\sum_{x \in \mathcal{X}_{\text{high}} \cup \mathcal{X}_{\text{syn}}} \log(D_2(x)) - \sum_{x \in \mathcal{X}_{\text{low}}} \log(1 - D_2(x))$$

- Adversarial Data Augmentation method with Auxiliary discriminato R (ADAAR)
- To obtain better initialization:
 - AutoEncoder with reconstruction loss

$$\mathcal{L}_{AE} = \sum_{x \in \mathcal{X}_{\text{ori}}} \|x - \hat{x}\|_2^2$$

- D_1 and D_2 are initialized with encoder
- G is initialized with decoder

>User

• Time Range:

M7 $(2018/07/01 \sim 2018/07/31)$

 $M9 (2018/09/01 \sim 2018/09/30)$

 $M11 (2018/11/01 \sim 2018/11/30)$

Dataset	#Users	#Major	#Minor	Rate
M7	334,695		3,910	1.18%
M9	404,491	400,778	3,713	0.93%
M11	524,935	520,369	4,566	0.88%

• Train/Test: M7/M9, M9/M11

> Feature

- User profile, credit information, purchasing behaviors, and asset information, etc.
- Dimension: 908

Experiment

- Compared with state-of-the-art BAGAN_[ICML'18 Workshop]
 - AUC improvement 0.4%~1.82%
 - R@P_{0.1} improvement 1.8%~3.8%

	Dataset	M7/M9		M9/M11	
	Method	AUC	R@P _{0.1}	AUC	R@P _{0.1}
Baselines	NS	0.8698 ± 0.0029	0.3626 ± 0.0223	0.8366 ± 0.0041	0.2399 ± 0.0099
	ROS	0.8742 ± 0.0031	0.3909 ± 0.0275	0.8468 ± 0.0076	0.2478 ± 0.0253
	SMOTE	0.8717 ± 0.0079	0.3606 ± 0.0404	0.8410 ± 0.0059	0.1933 ± 0.0226
	ADASYN	0.8751 ± 0.0019	0.3582 ± 0.0252	0.8389 ± 0.0071	0.2072 ± 0.0170
	BAGAN	0.8740 ± 0.0012	0.3991 ± 0.0104	0.8410 ± 0.0046	0.2523 ± 0.0081
	GLGAN	0.8737 ± 0.0016	0.3849 ± 0.0128	0.8341 ± 0.0043	0.2455 ± 0.0109
Ours	ADAAR	0.8780 ± 0.0009	0.4170 ± 0.0065	0.8592 ± 0.0008	0.2910 ± 0.0063
Ablation Test	ADAAR w/o <i>AE</i>	0.8736 ± 0.0021	0.3871 ± 0.0126	0.8322 ± 0.0026	0.2384 ± 0.0138
	ADAAR w/o D_1	0.8748 ± 0.0019	0.3946 ± 0.0097	0.8380 ± 0.0049	0.2644 ± 0.0328
	ADAAR w/o D_2	0.8757 ± 0.0015	0.3928 ± 0.0059	0.8549 ± 0.0076	0.2689 ± 0.0253
				- 6 7	

Conclusion and Future work

≻Conclusion

- We design an adversarial training framework to generate synthetic samples alike the real high-risk samples.
- We propose an auxiliary discriminator to assess the risk to make synthetic samples unlike the low-risk samples.

➤ Future Work

- Cost-sensitive imbalanced learning methods
- Extensions to other structures like graph data

Thanks for listening!

If you have any question, feel free to contact us at

liuyang17z@ict.ac.cn aoxiang@ict.ac.cn