Alike and Unlike: Resolving Class Imbalance Problem in Financial Credit Risk Assessment Yang Liu¹²; Xiang Ao^{1*}; Qiwei Zhong²; Jinghua Feng²; Jiayu Tang²; Qing He¹ ² Alibaba Group ^{*} denotes corresponding author. #### **Content** - ➤ Background and Motivation - ➤ Method ADAAR - **≻**Experiment - ➤ Conclusion and Future Work #### ➤ Credit Payment - Promise to pay the bill before the due day - Examples: Credit Card, Ant Credit Pay, PayPal Credit Pay #### ➤ Credit Risk Assessment - Low-risk: repay the bill in-time - High-risk: default, fraud, ... #### >Importance • High-risk payments account for **0.68%** of retail revenue in the U.S. but the fraud cost reached as high as **\$32 billion**.¹ ¹ Annual report by LexisNexis. From http://www.lexisnexis.com/risk/downloads/assets/true-cost-fraud-2014.pdf #### **Motivation** - Credit risk assessment is a classimbalanced problem. - Majority class Low-risk users(>99%) - Minority class High-risk users(<1%) #### >Solution: • Data augmentation for the minority class. #### ➤ Objective: - Alike the minority class - Unlike the majority class - Adversarial Data Augmentation method with Auxiliary discriminato R (ADAAR) - >Alike the minority class - D_1 identifies real samples from fake samples - Adversarial loss for D_1 and G $$\min_{D_1} \max_{G} \mathcal{L}_{adv} = -\sum_{x \in \mathcal{X}_{high}} \log(D_1(x)) - \sum_{z \in \mathcal{Z}} [1 - \log(D_1(G(z)))]$$ - **➤ Unlike** the majority class - D_2 discriminates low or high risk users - Cross-entropy loss for G and D_2 $$\min_{D_2, G} \mathcal{L}_{ce} = -\sum_{x \in \mathcal{X}_{\text{high}} \cup \mathcal{X}_{\text{syn}}} \log(D_2(x)) - \sum_{x \in \mathcal{X}_{\text{low}}} \log(1 - D_2(x))$$ - Adversarial Data Augmentation method with Auxiliary discriminato R (ADAAR) - To obtain better initialization: - AutoEncoder with reconstruction loss $$\mathcal{L}_{AE} = \sum_{x \in \mathcal{X}_{\text{ori}}} \|x - \hat{x}\|_2^2$$ - D_1 and D_2 are initialized with encoder - G is initialized with decoder #### **>**User • Time Range: M7 $(2018/07/01 \sim 2018/07/31)$ $M9 (2018/09/01 \sim 2018/09/30)$ $M11 (2018/11/01 \sim 2018/11/30)$ | Dataset | #Users | #Major | #Minor | Rate | |---------|---------|---------|--------|-------| | M7 | 334,695 | | 3,910 | 1.18% | | M9 | 404,491 | 400,778 | 3,713 | 0.93% | | M11 | 524,935 | 520,369 | 4,566 | 0.88% | • Train/Test: M7/M9, M9/M11 #### > Feature - User profile, credit information, purchasing behaviors, and asset information, etc. - Dimension: 908 ### **Experiment** - Compared with state-of-the-art BAGAN_[ICML'18 Workshop] - AUC improvement 0.4%~1.82% - R@P_{0.1} improvement 1.8%~3.8% | | Dataset | M7/M9 | | M9/M11 | | |---------------|---------------------|---------------------|---------------------|---------------------|---------------------| | | Method | AUC | R@P _{0.1} | AUC | R@P _{0.1} | | Baselines | NS | 0.8698 ± 0.0029 | 0.3626 ± 0.0223 | 0.8366 ± 0.0041 | 0.2399 ± 0.0099 | | | ROS | 0.8742 ± 0.0031 | 0.3909 ± 0.0275 | 0.8468 ± 0.0076 | 0.2478 ± 0.0253 | | | SMOTE | 0.8717 ± 0.0079 | 0.3606 ± 0.0404 | 0.8410 ± 0.0059 | 0.1933 ± 0.0226 | | | ADASYN | 0.8751 ± 0.0019 | 0.3582 ± 0.0252 | 0.8389 ± 0.0071 | 0.2072 ± 0.0170 | | | BAGAN | 0.8740 ± 0.0012 | 0.3991 ± 0.0104 | 0.8410 ± 0.0046 | 0.2523 ± 0.0081 | | | GLGAN | 0.8737 ± 0.0016 | 0.3849 ± 0.0128 | 0.8341 ± 0.0043 | 0.2455 ± 0.0109 | | Ours | ADAAR | 0.8780 ± 0.0009 | 0.4170 ± 0.0065 | 0.8592 ± 0.0008 | 0.2910 ± 0.0063 | | Ablation Test | ADAAR w/o <i>AE</i> | 0.8736 ± 0.0021 | 0.3871 ± 0.0126 | 0.8322 ± 0.0026 | 0.2384 ± 0.0138 | | | ADAAR w/o D_1 | 0.8748 ± 0.0019 | 0.3946 ± 0.0097 | 0.8380 ± 0.0049 | 0.2644 ± 0.0328 | | | ADAAR w/o D_2 | 0.8757 ± 0.0015 | 0.3928 ± 0.0059 | 0.8549 ± 0.0076 | 0.2689 ± 0.0253 | | | | | | - 6 7 | | #### **Conclusion and Future work** #### **≻**Conclusion - We design an adversarial training framework to generate synthetic samples alike the real high-risk samples. - We propose an auxiliary discriminator to assess the risk to make synthetic samples unlike the low-risk samples. #### ➤ Future Work - Cost-sensitive imbalanced learning methods - Extensions to other structures like graph data ## Thanks for listening! If you have any question, feel free to contact us at liuyang17z@ict.ac.cn aoxiang@ict.ac.cn